Designing spatial and temporal data warehouses

Slides:



Advertisements
Similar presentations
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 3.1 Chapter 3.
Advertisements

1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 4.1 Chapter 4.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 6.1 Chapter 6.
Chapter 4 Tutorial.
Fig. 4-1, p Fig. 4-2, p. 109 Fig. 4-3, p. 110.
1 Copyright Jiawei Han; modified by Charles Ling for CS411a/538a Data Mining and Data Warehousing  Introduction  Data warehousing and OLAP for data mining.
Department of Software and Computing Systems Physical Modeling of Data Warehouses using UML Sergio Luján-Mora Juan Trujillo DOLAP 2004.
P.464. Table 13-1, p.465 Fig. 13-1, p.466 Fig. 13-2, p.467.
Fig. 11-1, p p. 360 Fig. 11-2, p. 361 Fig. 11-3, p. 361.
Table 6-1, p Fig. 6-1, p. 162 p. 163 Fig. 6-2, p. 164.
Copyright © 2008 Pearson Education, Inc. Chapter 3 The Derivative Copyright © 2008 Pearson Education, Inc.
Advanced Topics COMP163: Database Management Systems University of the Pacific December 9, 2008.
CHAPTER 50 AN INTRODUCTION TO ECOLOGY AND THE BIOSPERE Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section D: The Spatial.
Spatial data warehouses and SOLAP: a new GIS technology Geosciences, mapping day Jean-Paul KASPRZYK, phd student.
Copyright © 2004 Pearson Education, Inc.. Chapter 3 Data Modeling Using the Entity-Relationship Model.
Copyright © 2008 Pearson Education, Inc. Chapter 13 The Trigonometric Functions Copyright © 2008 Pearson Education, Inc.
Phase Difference = Phase Difference = 0.05.
By N.Gopinath AP/CSE. Two common multi-dimensional schemas are 1. Star schema: Consists of a fact table with a single table for each dimension 2. Snowflake.
Figure 1.1 The observer in the truck sees the ball move in a vertical path when thrown upward. (b) The Earth observer views the path of the ball as a parabola.
Databases & Data Warehouses
Supporting Multiple Representations in Spatio-Temporal Databases Stefano Spaccapietra Database Laboratory Ecole Polytechnique Fédérale Lausanne (EPFL)
Copyright © 2004 Pearson Education, Inc.. Chapter 26 XML and Internet Databases.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Chapter 4 Applications of the Derivative.
Control of Gene Expression
Chapters #5 and #2. Box 4A wild-type fruit fly antennapedia mutant.
Dimensional Modeling Primer Chapter 1 Kimball & Ross.
Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi 1 Chapter 4 Spatial Data Warehouses.
Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi 1 Chapter 5 Temporal Data Warehouses.
Panel Discussion for the DTC Verification System 23 Feb 2007.
13 1 Chapter 13 The Data Warehouse Database Systems: Design, Implementation, and Management, Seventh Edition, Rob and Coronel.
Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi 1 Chapter 3 Conventional Data Warehouses.
CSE6011 Implementing a Warehouse  Monitoring: Sending data from sources  Integrating: Loading, cleansing,...  Processing: Query processing, indexing,...
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 7 Lecture # 17 July 28,2012 Data Modeling using the Entity Relationship.
Electronic Circuits, Tenth Edition James W. Nilsson | Susan A. Riedel Copyright ©2015, 2008, 2005 by Pearson Education, Inc. All rights reserved. Figure.
Wavelets and Multiresolution Processing
Chapter 10 Image Slides Title
Query Optimization Phases of query processing
Databases & Data Warehouses
Age-related changes in spatial and temporal gait variables
Copyrights apply.
Designing conventional data warehouses
Applications of the Derivative
Image Enhancement in the
Chapt 2 Iterative Evolutionary Agile.
Appendix B Graphical Notations
Issue 326 Temporal entities
Conceptual, Logical, and Physical Design of Data Warehouses
Formalization of the MultiDim Model
Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009
Data Mining, Second Edition, Copyright © 2006 Elsevier Inc.
Text Illustrations in PPT Chapter 4. Phase and Frequency Modulation
Chapter Three Aggregate Planning. Chapter Three Aggregate Planning.
Chapter 13 The Data Warehouse
Chapter 11.
Chapter 6 Data Types.
Chapter 25 Analysis of Gene Expression
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2012, Elsevier Inc. All rights Reserved.
IT323 Project Phase#2.
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright © 2013 Elsevier Inc. All rights reserved.
Daphne Koinis-Mitchell, PhD, Timothy Craig, DO, Cynthia A
ER Example Expressed as IMM Core Instance Specifications
Modeling Functionality with Use Cases
Copyright © 2012, Elsevier Inc. All rights Reserved.
Chapter 2 Part 1 Data and Expressions.
Chapter 6.
Copyright © 2012, Elsevier Inc. All rights Reserved.
Chapter 77 Cervical Cancer: Burden of Disease
Presentation transcript:

Designing spatial and temporal data warehouses Chapter 7 Designing spatial and temporal data warehouses Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

(a) (b) Fig. 7.1. Steps of the analysis-driven approach for spatial and temporal data warehouses Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.2. Spatial data requirements expressed in a multidimensional schema Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.3. Multidimensional schema for the inclusion of spatial elements Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.4. A spatial hierarchy for the Conference dimension in Fig. 7.3 Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

(a) (b) Fig. 7.5. Steps of the source-driven approach for spatial and temporal data warehouses Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.6. Excerpt from the ER schema of the risk management application Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.7. Spatial-data-warehouse schema derived from the schema in Fig. 7.6 Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

(a) Requirements specification phase (b) Conceptual-design phase Fig. 7.8. Steps of the analysis/source-driven approach for spatial and temporal data warehouses Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.9. Resulting schema with early inclusion of temporal support Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.10. Excerpt from an operational ER schema with temporal data Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.11. Temporal-data-warehouse schema derived from the schema in Fig. 7.10 Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.12. Steps in the analysis-driven approach for spatial and temporal data warehouses Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.13. Steps in the source-driven approach for spatial and temporal data warehouses Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi

Fig. 7.14. Steps in the analysis/source-driven approach for spatial and temporal data warehouses Copyright © 2008 Elzbieta Malinowski & Esteban Zimányi