Volume 1, Issue 4, Pages (December 2017)

Slides:



Advertisements
Similar presentations
A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents  Leyuan Zhang, Changkun Zhang, Yu Ding, Katrina Ramirez-Meyers,
Advertisements

Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 4, Pages (December 2017)
Volume 3, Issue 4, Pages (October 2017)
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Volume 2, Issue 2, Pages (February 2018)
Volume 3, Issue 2, Pages (August 2017)
Volume 1, Issue 3, Pages (November 2017)
On the Electrolytic Stability of Iron-Nickel Oxides
Quan Pang, Xiao Liang, Abhinandan Shyamsunder, Linda F. Nazar  Joule 
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Volume 3, Issue 3, Pages (September 2017)
Yongbo Kuang, Taro Yamada, Kazunari Domen  Joule 
Volume 3, Issue 5, Pages (November 2017)
Volume 1, Issue 2, Pages (October 2017)
Lithium Metal Extraction from Seawater
Volume 1, Issue 4, Pages (December 2017)
Homogeneously dispersed multimetal oxygen-evolving catalysts
Zhen Li, Bu Yuan Guan, Jintao Zhang, Xiong Wen (David) Lou  Joule 
Lithium Metal Anodes: A Recipe for Protection
Volume 1, Issue 1, Pages (September 2017)
Wei Wen, Jin-Ming Wu, Yin-Zhu Jiang, Lu-Lu Lai, Jian Song  Chem 
Volume 2, Issue 1, Pages (January 2018)
Homogeneously dispersed, multimetal oxygen-evolving catalysts
Aliza Khurram, Mingfu He, Betar M. Gallant  Joule 
Volume 4, Issue 2, Pages (February 2018)
Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water by Song Lin, Christian S. Diercks, Yue-Biao Zhang, Nikolay.
Volume 3, Issue 5, Pages (November 2017)
Volume 11, Pages (January 2019)
Volume 5, Issue 3, Pages (March 2019)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 3, Pages (November 2017)
Volume 2, Issue 2, Pages (February 2017)
High-Energy Li Metal Battery with Lithiated Host
Volume 3, Issue 6, Pages (December 2017)
Volume 2, Issue 3, Pages (March 2018)
Volume 2, Issue 1, Pages (January 2018)
Volume 3, Issue 2, Pages (February 2019)
Volume 4, Issue 2, Pages (February 2018)
Volume 1, Issue 4, Pages (December 2017)
Volume 1, Issue 2, Pages (October 2017)
Volume 2, Issue 6, Pages (June 2017)
Volume 1, Issue 3, Pages (November 2017)
Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes
Volume 1, Issue 4, Pages (December 2017)
Volume 3, Issue 4, Pages (October 2017)
Volume 3, Issue 5, Pages (November 2017)
Volume 3, Issue 4, Pages (October 2017)
Reactivity-Guided Interface Design in Na Metal Solid-State Batteries
Volume 1, Issue 3, Pages (November 2017)
Volume 2, Issue 11, Pages (November 2018)
Volume 2, Issue 3, Pages (March 2018)
Volume 3, Issue 1, Pages (July 2017)
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Electrochemical Reduction of CO2 Catalyzed by Metal Nanocatalysts
Volume 11, Pages (January 2019)
Volume 7, Pages (September 2018)
Volume 2, Issue 4, Pages (April 2018)
Structural analysis of graphene-embedded FeN4 (FeN4/GN) catalysts
Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction
Long Jiao, Hai-Long Jiang  Chem  Volume 5, Issue 4, Pages (April 2019)
Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries  Li-Na.
Volume 1, Issue 2, Pages (October 2017)
Volume 3, Issue 4, Pages (October 2017)
Infrared Light-Driven CO2 Overall Splitting at Room Temperature
Anode-Electrolyte Interfaces in Secondary Magnesium Batteries
Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy by Yuzhang Li, Yanbin Li, Allen Pei, Kai Yan, Yongming.
Volume 3, Issue 9, Pages (September 2019)
Presentation transcript:

Volume 1, Issue 4, Pages 794-805 (December 2017) Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate  Xueli Zheng, Phil De Luna, F. Pelayo García de Arquer, Bo Zhang, Nigel Becknell, Michael B. Ross, Yifan Li, Mohammad Norouzi Banis, Yuzhang Li, Min Liu, Oleksandr Voznyy, Cao Thang Dinh, Taotao Zhuang, Philipp Stadler, Yi Cui, Xiwen Du, Peidong Yang, Edward H. Sargent  Joule  Volume 1, Issue 4, Pages 794-805 (December 2017) DOI: 10.1016/j.joule.2017.09.014 Copyright © 2017 Elsevier Inc. Terms and Conditions

Joule 2017 1, 794-805DOI: (10.1016/j.joule.2017.09.014) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 Computational Investigation of Sulfur-Modulated Tin System (A) Optimized surface slab structures of pure Sn, S-modulated Sn, and SnS. (B) Gibbs free energies of formation (ΔGformation) for HCOO* (yellow), COOH* (gray), and H* (blue) intermediates, which are the rate-limiting intermediates along the reaction pathway to produce formate, carbon monoxide, and hydrogen gas, respectively. (C) Volume slice of the charge densities through the middle of the oxygen atom of a bound HCOO* intermediate. (D) Atomic accessible surface area of the metal slab normalized to the number of tin atoms as a function of sulfur content. Joule 2017 1, 794-805DOI: (10.1016/j.joule.2017.09.014) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 Fabrication of Nanostructured Sn(S) Catalysts (A–C) Schematic and SEM images of the process leading to the fabrication of Sn(S) nanostructured electrodes. (A) Au needles. (B) Au needles after SnS deposition by ALD process. (C) Au needles coated with sulfur-modulated-tin films. (D) A SnSx slab is conformally deposited by ALD on top of the nanostructured metal backbone. (E) The selective reduction of SnSx leads to Sn(S) films, which promotes CO2RR toward formate. The dashed circle means active sites for formate generation. Joule 2017 1, 794-805DOI: (10.1016/j.joule.2017.09.014) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 Characterization of Sulfur-Modulated Tin Catalysts (A) High-resolution transmission electron microscope (HRTEM) image of the ALD SnSx before reaction showing a highly polycrystalline surface. Scale bar represents 5 nm. (B and C) Fast Fourier transform (FFT) of the polycrystalline region (B) and one specific crystalline grain (C). (D and E) HRTEM image of the reduced Sn(S) active catalyst after reaction showing a uniform amorphous layer on the surface. Scale bar represents 20 nm for (D); scale bar represents 5 nm for (E). Inset is the FFT of the amorphous region. (F–I) STEM image (F) of Sn(S)/Au and the corresponding EDS mapping to show homogeneously dispersed Au (G), Sn (H), and S (I). Scale bar represents 100 nm. Joule 2017 1, 794-805DOI: (10.1016/j.joule.2017.09.014) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 4 Electronic Structure of Sn(S) and Sn (A) In situ Sn L3-edge XANES spectra of Sn NPs, SnS, Sn NPs at −0.7 V versus RHE, and Sn(S) at −0.7 V versus RHE. Inset shows zoom in of the pre-edge energy range. (B) Sn L3-edge spectra of Sn(S) and Sn NPs on carbon paper after reaction (edge shift indicated by a red arrow). (C) Sn K-edge of Sn(S) and relevant controls. Inset shows zoom in of the pre-edge energy range. (D) XPS spectra of Sn(S), Sn NPs, and ALD SnSx. Joule 2017 1, 794-805DOI: (10.1016/j.joule.2017.09.014) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 5 Performance of Sulfur-Modulated Tin Catalysts and Controls in a Three-Electrode Configuration in CO2 Saturated 0.1 M KHCO3 Aqueous Electrolyte (A) The CO2RR polarization curve of catalysts loaded on Au needles and Sn foil, respectively. (B) Potential dependence (with iR corrected) of Faradaic efficiencies and current densities for CO2RR on Sn(S)/Au (squares) and Sn NPs/Au (circles). (C) Stability test of Sn(S) at −0.75 V versus RHE (iR corrected). Joule 2017 1, 794-805DOI: (10.1016/j.joule.2017.09.014) Copyright © 2017 Elsevier Inc. Terms and Conditions