– or: debunking the Neufeld scenario

Slides:



Advertisements
Similar presentations
1 Black Holes in the Early Universe Accretion and Feedback Geoff Bicknell & Alex Wagner Research School of Astronomy & Astrophysics Australian National.
Advertisements

Metals at Highish Redshift And Large Scale Structures From DLAs to Underdense Regions Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R.
Fluorescent Processes Research School of Astronomy & Astrophysics Fluorescent Processes Feeding The Beast: Infall, Mergers or Starbursts? Mike Dopita (ANU)
The W i d e s p r e a d Influence of Supermassive Black Holes Christopher Onken Herzberg Institute of Astrophysics Christopher Onken Herzberg Institute.
Motivation 40 orbits of UDF observations with the ACS grism Spectra for every source in the field. Good S/N continuum detections to I(AB) ~ 27; about 30%
Lyman-α Galaxies at High Redshift James E. Rhoads (Space Telescope Science Institute) with Sangeeta Malhotra, Steve Dawson, Arjun Dey, Buell Jannuzi, Emily.
First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
Cosmological Reionization Nick Gnedin. Co-starring Gayler Harford Katharina Kohler Peter Shaver Mike Shull Massimo Ricotti.
Lyman  — The Great Escape Dark Cosmology Centre | Niels Bohr Institutet | Københavns Universitet DFS Annual Meeting 2009 Supervisors:
Large Scale Structure of the Universe at high redshifts Large Scale Structure of the Universe at high redshifts M.Demianski, A.Doroshkevich and S.Gottloeber.
Universe in a box: simulating formation of cosmic structures Andrey Kravtsov Department of Astronomy & Astrophysics Center for Cosmological Physics (CfCP)
Primeval Starbursting Galaxies: Presentation of “Lyman-Break Galaxies” by Mauro Giavalisco Jean P. Walker Rutgers University.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
Lessons from other wavelengths. A picture may be worth a thousand words, but a spectrum is worth a thousand pictures.
Post GP-WMAP Reionization: the morning after We need quantitative measures of Epoch of reionization (Z reion ) Neutral fractions Volume fraction of ionized/neutral.
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Evolution in Lyman-alpha Emitters and Lyman-break Galaxies Masao Mori Theoretical Astrophysics division, Center for Computational Sciences, University.
Large Area Survey of Lyman Alpha Emitters Zheng Yale Center for Astronomy and Astrophysics Yale/WIYN One Degree Imager Survey Workshop Oct 3rd, 2009.
Galaxy Formation and Evolution Chris Brook Modulo 15 Room 509
3.SED Fitting Method Figure3. A plot between IRAC ch2 magnitudes (4.5  m) against derived stellar masses indicating the relation of the stellar mass and.
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
Galaxies: Extremely Far Starbursts? James E. Rhoads STScI and Arizona State University Lijiang, August 19, 2005 In collaboration with Sangeeta Malhotra,
Texas Symposium, MelbourneDecember 14th 2006 Theoretical Properties of Ly  Cooling Radiation’ Mark Dijkstra (CfA) Collaborators: Z. Haiman, M.Spaans &
The Detectability of Lyα Emission from Galaxies during the Epoch of Reionization Dijkstra, Mesinger, Wyithe. JC Alex Fry.
Mário Santos1 EoR / 21cm simulations 4 th SKADS Workshop, Lisbon, 2-3 October 2008 Epoch of Reionization / 21cm simulations Mário Santos CENTRA - IST.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
MMT Symposium June 14th, 2006 Steven Finkelstein (ASU)1 The Nature of High Equivalent- Width Lyman-α Galaxies Steven Finkelstein, James Rhoads, Sangeeta.
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
The Large Area Lyman-  Survey (LALA) Junxian Wang University of Science and Technology of China Beijing, July
1a.Introduction 1b.PopIII stars and galaxies --> « top down » theoretical approach 2.,3a.Ly  physics and astrophysics 3.b,4.Distant/primeval galaxies:
‘LAEs as a Probe of the High-z Universe’, Ringberg, March, 2009 Lyman Alpha Emitters (LAEs) as a Probe of the High- Redshift Universe Mark Dijkstra (CfA)
Lyman  — The Great Escape Dark Cosmology Centre | Niels Bohr Institutet | Københavns Universitet Peter Laursen – Paris, 2009.
Mark Dijkstra, PSU, June 2010 Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies ‘ Mark Dijkstra (ITC, Harvard) based.
Observing galaxies at z = 8.8 — is it worth the effort? | Niels Bohr Institutet | Københavns Universitet Peter Laursen, with.
Lyman Alpha Spheres from the First Stars observed in 21 cm Xuelei Chen (Beijing) Jordi Miralda Escudé (IEEC, Barcelona).
Present-Day Descendants of z=3.1 Ly  Emitting (LAE) Galaxies in the Millennium-II Halo Merger Trees Jean P. Walker Soler – Rutgers University Eric Gawiser.
Deep Surveys for High-z Galaxies with Hyper Suprime-Cam M. Ouchi (OCIW), K. Shimasaku (U. Tokyo), H. Furusawa (NAOJ), & HSC Consortium ≲ ≳≲ ≳
IAP Ly  workshop 2007, Paris Dust in Young Galaxies DARK Cosmology Centre | Niels Bohr Institutet | Københavns Universitet.
The distant Universe and something about gravitational waves.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Cosmological Structure with the Lyman Alpha Forest. Jordi Miralda Escudé ICREA, Institut de Ciències del Cosmos University of Barcelona, Catalonia Edinburgh,
Galaxy Evolution and WFMOS
Lecture 6 Summary and Perspectives
A Turbulent Local Environment
Subaru UM 2010 on Mitaka First Unbiased Estimates of the Metallicity and Star-Formation Activity of Lyman Alpha Emitters Kimihiko Nakajima(U.
Dark Matter Join me on the Dark Side.
Spectroscopic Properties of the z=4.5 Lya-Emitters
Possibility of UV observation in Antarctica
– or – Modeling Lya spectra Peter Laursen,
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
On the implications for the Lya line of an inhomogeneous, dusty medium
Observing galaxies at z = 8.8
Dust. LyGalaxies Nyborg, 2008
Probing Reionization with Lyman Alpha Emitters Pratika Dayal
Lyman α – impact of the intergalactic medium
Intergalactic transmission and its impact on the Lyman a line
Ly Scattering in Young Galaxies
Galaxies What is a galaxy?
Region in the Constellation Orion named the Orion Nebula which is the closest star formation region to us. Jets and disks appear to be part of the star.
What do we want to learn, and why?
Probing Reionization & Galaxy Evolution by High-z Lyα Emitters
Modeling Lyα emission from high-z galaxies
Dust in Young Galaxies Peter Laursen Supervisor: Anja C. Andersen
Author: Ting-Wen Lan and Houjun Mo.(2018)
Borislav Nedelchev et al. 2019
Presentation transcript:

– or: debunking the Neufeld scenario On the enhancement of the Lya equivalent width by a multiphase interstellar medium – or: debunking the Neufeld scenario Peter Laursen With Florent Duval & Göran Östlin (OKC) www.dark-cosmology.dk/~pela Dark Cosmology Centre | Niels Bohr Institutet | Københavns Universitet

Motivation Lyman α emitting galaxies (LAEs) are important probes of the high-redshift Universe: • Epoch of Reionization • Baryonic Acoustic Oscillations • Luminosity function (faint end) These are statistical properties. Individual observations are hampered by insufficient knowledge about radiative transfer effects. One way, however, to probe individual galaxies is by looking at the equivalent width of Lyα. They are a good tool because the Lyman-alpha bias, the propensity for galaxies to form in the highest overdensity of the underlying dark matter distribution, can be modeled and accounted for. Lyman-alpha emitters are over dense in clusters

Motivation Equivalent width: Boost: “Max 240 Å!”, say Charlot & Fall (1993), and Schaerer (2003). “But… but…”, say Kudritzki et al. (2000), Malhotra & Rhoads (2002), Rhoads et al. (2003), Dawson et al. (2004), Hu et al. (2004), Shimasaku et al. (2006), Ouchi et al. (2008), Nilsson et al. (2009), Kashikawa et al. (2011), etc. Boost: “Clumpiness!”, say Chapman et al. (2005), Finkelstein et al. (2007, 2008, 2009a,b,c, 2011a,b), Dayal et al. (2008, 2009, 2010, 2011), Niino et al. (2009), Yuma et al. (2010), Kobayashi et al. (2010), Blanc et al. (2011), Nakajima et al. (2012), etc.

Multiphase medium Neufeld (1991); Hansen & Oh (2006)

Neufeld 1991 Enter Hansen & Oh (2006)

Systematic approach MoCaLaTA (Laursen et al. 2009)

Varying the input parameters 3 1 cm-3 Z 0 km s-1 0 cm-3 Central 104 K; 106 K 100 pc “Fiducial” model: • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters (on at a time) • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

Varying the input parameters • Covering factor, fc • Cloud HI density, nHI,cl • Cloud dust density ( metallicity, Zcl) • Cloud velocity dispersion, σV,cl • Galactic outflow velocity, Vout • Intercloud HI density, nHI,ICM • Intercloud dust density ( ZICM) • Emission scale length, H • Emission/cloud correlation factor, Pcl • Intrinsic line width, σline • Gas temperature, Tcl; TICM • Cloud size distribution, rcl,min; rcl,max; β

From ideal to semi-realistic (varying in unison)

From ideal to semi-realistic (each dot is the result of a model)

From ideal to semi-realistic

From ideal to semi-realistic

From ideal to semi-realistic

Line profiles Average spectrum of boost-yielding (extreme) models — not realistic (too narrow)

Alternative scenarios • Top-heavy IMF (Malhotra & Rhoads 02) • Population III stars (Schaerer 03, Tumlinson 03) • Delayed escape of Lyα (Roy+ 10, Xu+ 11) • AGN activity (<5%, Wang+ 04, Gawiser+ 06) • Viewing angle (Laursen 07/09, Verhamme 12) • Cooling radiation (Dijkstra+ 09, Laursen+ 09, Dayal+ 10) • Measuring errors (Henry+ 10) • Star formation stochasticity (Forero-Romero & Dijkstra 12) • Inhomogeneous escape (Hayes+ 07)

Alternative scenarios • Top-heavy IMF (Malhotra & Rhoads 02) • Population III stars (Schaerer 03, Tumlinson 03) • Delayed escape of Lyα (Roy+ 10, Xu+ 11) • AGN activity (<5%, Wang+ 04, Gawiser+ 06) • Viewing angle (Laursen 07/09, Verhamme 12) • Cooling radiation (Dijkstra+ 09, Laursen+ 09, Dayal+ 10) • Measuring errors (Henry+ 10) • Star formation stochasticity (Forero-Romero & Dijkstra 12) • Inhomogeneous escape (Hayes+ 07)

Viewing angle (even in a homogeneous medium, without dust, a “boost” can be measured)

Alternative scenarios • Top-heavy IMF (Malhotra & Rhoads 02) • Population III stars (Schaerer 03, Tumlinson 03) • Delayed escape of Lyα (Roy+ 10, Xu+ 11) • AGN activity (<5%, Wang+ 04, Gawiser+ 06) • Viewing angle (Laursen 07/09, Verhamme 12) • Cooling radiation (Dijkstra+ 09, Laursen+ 09, Dayal+ 10) • Measuring errors (Henry+ 10) • Star formation stochasticity (Forero-Romero & Dijkstra 12) • Inhomogeneous escape (Hayes+ 07)

Conclusion: No astrophysically realistic scenario can boost the Lyα equivalent width by clumpiness alone. Rather, a combination of clumpiness, orientation, top-heavy IMF, cooling radiation, etc. adds to create a boost. • o r i e n t a c o l i n g r a d t Whereas in the scenario originally proposed by Neufeld the boost increases with cloud covering factor, even a small cloud velocity dispersion inverts this relation. •