Confirmatory factor analysis

Slides:



Advertisements
Similar presentations
Chapter 6 Confidence Intervals.
Advertisements

Structural Equation Modeling Using Mplus Chongming Yang Research Support Center FHSS College.
Confirmatory factor analysis GHQ 12. From Shevlin/Adamson 2005:
Mixture modelling of continuous variables. Mixture modelling So far we have dealt with mixture modelling for a selection of binary or ordinal variables.
SOC 681 James G. Anderson, PhD
Simple Linear Regression
Growth Curve Model Using SEM
Exploratory factor analysis GHQ-12. EGO GHQ-12 EFA 1) Assuming items are continuous Variable: Names are ghq01 ghq02 ghq03 ghq04 ghq05 ghq06 ghq07 ghq08.
1 The Chi squared table provides critical value for various right hand tail probabilities ‘A’. The form of the probabilities that appear in the Chi-Squared.
LECTURE 11 Hypotheses about Correlations EPSY 640 Texas A&M University.
Chapter Topics Confidence Interval Estimation for the Mean (s Known)
G Lecture 51 Estimation details Testing Fit Fit indices Arguing for models.
C82MCP Diploma Statistics School of Psychology University of Nottingham 1 Linear Regression and Linear Prediction Predicting the score on one variable.
Confirmatory factor analysis
Session 1 1 Check installations 2 Open Mplus 3 Type basic commands 4 Get data read in, spat out &read in again 5 Run an analysis 6 What has it done?
Confidence Intervals Chapter 6. § 6.1 Confidence Intervals for the Mean (Large Samples)
SECTION 6.4 Confidence Intervals for Variance and Standard Deviation Larson/Farber 4th ed 1.
SEM Analysis SPSS/AMOS
Chapter 6 Confidence Intervals.
BPS - 3rd Ed. Chapter 211 Inference for Regression.
Statistics for the Behavioral Sciences Second Edition Chapter 11: The Independent-Samples t Test iClicker Questions Copyright © 2012 by Worth Publishers.
+ Chapter 12: Inference for Regression Inference for Linear Regression.
Variability. Statistics means never having to say you're certain. Statistics - Chapter 42.
H1H1 H1H1 HoHo Z = 0 Two Tailed test. Z score where 2.5% of the distribution lies in the tail: Z = Critical value for a two tailed test.
Analysis of Residuals Data = Fit + Residual. Residual means left over Vertical distance of Y i from the regression hyper-plane An error of “prediction”
Statistics PSY302 Quiz One Spring A _____ places an individual into one of several groups or categories. (p. 4) a. normal curve b. spread c.
Session 1 1 Check installations 2 Open Mplus 3 Type basic commands 4 Get data read in, spat out &read in again 5 Run an analysis 6 What has it done?
1 DIF. 2 Winsteps: MFQ & DIF 3 Sample 2500 “boys” and 2500 “girls” All roughly 14 years old Data collected from ALSPAC hands-on clinic Short-form (13-item)
© Copyright McGraw-Hill 2000
1 Differential Item Functioning in Mplus Summer School Week 2.
Measurement Models: Identification and Estimation James G. Anderson, Ph.D. Purdue University.
Environmental Modeling Basic Testing Methods - Statistics III.
CJT 765: Structural Equation Modeling Class 8: Confirmatory Factory Analysis.
ALISON BOWLING CONFIRMATORY FACTOR ANALYSIS. REVIEW OF EFA Exploratory Factor Analysis (EFA) Explores the data All measured variables are related to every.
The general structural equation model with latent variates Hans Baumgartner Penn State University.
Demonstration of SEM-based IRT in Mplus
Chi Square Test for Goodness of Fit Determining if our sample fits the way it should be.
Section 7-5 Estimating a Population Variance. MAIN OBJECTIIVES 1.Given sample values, estimate the population standard deviation σ or the population variance.
BPS - 5th Ed. Chapter 231 Inference for Regression.
Chapter 11: Categorical Data n Chi-square goodness of fit test allows us to examine a single distribution of a categorical variable in a population. n.
Class Seven Turn In: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 For Class Eight: Chapter 20: 18, 20, 24 Chapter 22: 34, 36 Read Chapters 23 &
Lecture 11: Simple Linear Regression
Structural Equation Modeling using MPlus
Chapter 15 Confirmatory Factor Analysis
A Different Way to Think About Measurement Development:
Variance and Standard Deviation Confidence Intervals
Confidence Intervals and Hypothesis Tests for Variances for One Sample
Correlation, Regression & Nested Models
Active Learning Lecture Slides
CJT 765: Structural Equation Modeling
Evaluating IRT Assumptions
Elementary Statistics
Professor EOC Ijeoma and Antony Matemba Sambumbu
Section 6-4 – Confidence Intervals for the Population Variance and Standard Deviation Estimating Population Parameters.
Goodness-of-Fit Tests
Chapter 12 Inference on the Least-squares Regression Line; ANOVA
Statistics PSY302 Review Quiz One Fall 2018
Statistical Process Control
Discussion and Implications Model 7: Conscientiousness
Nonlinear Fitting.
CHAPTER 12 More About Regression
Simple Linear Regression
Confirmatory Factor Analysis
Janet J. Lee, MD, Ann C. Long, MD, MS, J
Statistics PSY302 Review Quiz One Spring 2017
Structural Equation Modeling to Assess Discrimination, Stress, Social Support, and Depression among the Elderly Women in South Korea  Hung Sa Lee, PhD,
Chapter 6 Confidence Intervals.
SEM evaluation and rules
SEM: Step by Step In AMOS and Mplus.
Estimating a Population Variance
Presentation transcript:

Confirmatory factor analysis GHQ 12

From Shevlin/Adamson 2005:

Model 2 – 2 factor Politi et al, 1994 01 02 03 04 05 06 07 08 09 10 11 12 F1 F2

Specifying the model F1 by ghq02* ghq05 ghq06 ghq09 ghq10 ghq11 ghq12; 01 03 04 07 08 12 F2 F2 by ghq01* ghq03 ghq04 ghq07 ghq08 ghq12; F2@1; F1 F2 F1 with F2;

Mplus syntax for ‘model 2’ Variable: Names are ghq01 ghq02 ghq03 ghq04 ghq05 ghq06 ghq07 ghq08 ghq09 ghq10 ghq11 ghq12 f1 id; Missing are all (-9999) ; usevariables = ghq01 ghq03 ghq05 ghq07 ghq09 ghq11 ghq02 ghq04 ghq06 ghq08 ghq10 ghq12; categorical = ghq01 ghq03 ghq05 ghq07 ghq09 ghq11 idvariable = id; Analysis: estimator = WLSMV; model: F1 by ghq02* ghq05 ghq06 ghq09 ghq10 ghq11 ghq12; F1@1; F2 by ghq01* ghq03 ghq04 ghq07 ghq08 ghq12; F2@1; F1 with F2;

Chi-Square Test of Model Fit Value 561.922* Degrees of Freedom 32** TESTS OF MODEL FIT Chi-Square Test of Model Fit Value 561.922* Degrees of Freedom 32** P-Value 0.0000 * The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-Square difference tests. MLM, MLR and WLSM chi-square difference testing is described in the Mplus Technical Appendices at www.statmodel.com. See chi-square difference testing in the index of the Mplus User's Guide. ** The degrees of freedom for MLMV, ULSMV and WLSMV are estimated according to a formula given in the Mplus Technical Appendices at www.statmodel.com. See degrees of freedom in the index of the Mplus User's Guide. Chi-Square Test of Model Fit for the Baseline Model Value 9961.631 Degrees of Freedom 13 CFI/TLI CFI 0.947 TLI 0.978 Number of Free Parameters 50 RMSEA (Root Mean Square Error Of Approximation) Estimate 0.122 WRMR (Weighted Root Mean Square Residual) Value 2.067

Results for ‘model 2’ MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value F1 BY GHQ02 0.679 0.018 37.113 0.000 GHQ05 0.745 0.015 48.738 0.000 GHQ06 0.816 0.013 61.601 0.000 GHQ09 0.884 0.009 93.445 0.000 GHQ10 0.886 0.009 97.383 0.000 GHQ11 0.845 0.012 68.721 0.000 GHQ12 0.327 0.043 7.516 0.000 F2 BY GHQ01 0.779 0.015 51.337 0.000 GHQ03 0.638 0.021 30.899 0.000 GHQ04 0.737 0.017 44.364 0.000 GHQ07 0.760 0.015 49.694 0.000 GHQ08 0.793 0.016 49.767 0.000 GHQ12 0.516 0.043 11.967 0.000 F1 WITH F2 0.825 0.012 69.584 0.000

Results for ‘model 2’ Two-Tailed Estimate S.E. Est./S.E. P-Value Thresholds GHQ01$1 -1.708 0.066 -25.896 0.000 GHQ01$2 0.384 0.038 9.989 0.000 GHQ01$3 1.427 0.055 25.837 0.000 GHQ03$1 -1.246 0.050 -24.816 0.000 GHQ03$2 0.864 0.043 20.076 0.000 GHQ03$3 1.699 0.066 25.922 0.000 GHQ05$1 -1.137 0.048 -23.813 0.000 GHQ05$2 0.154 0.038 4.094 0.000 GHQ05$3 1.213 0.049 24.541 0.000 GHQ07$1 -1.579 0.061 -26.092 0.000 <snip> GHQ12$1 -1.237 0.050 -24.739 0.000 GHQ12$2 0.624 0.040 15.507 0.000 GHQ12$3 1.512 0.058 26.047 0.000 Variances F1 1.000 0.000 999.000 999.000 F2 1.000 0.000 999.000 999.000

Graphs

Distribution of factors

Scatterplot of factors

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 χ² test of Model Fit Value 943.696* 561.922* 605.457* 799.014* 489.153* DF 33** 32** P-Value < 0.0001 (Baseline Model) 9961.631 13 CFI 0.908 0.947 0.942 0.923 0.954 TLI 0.964 0.978 0.977 0.969 0.982 # Params 48 50 49 51 RMSEA 0.157 0.122 0.125 0. 146 0.111 WRMR 2.725 2.067 2.149 2.441 1.854