Physics 101: Lecture 20 Elasticity and Oscillations

Slides:



Advertisements
Similar presentations
Chapter 14 - Simple Harmonic Motion
Advertisements

Physics January
Horizontal Spring-Block Oscillators
ConcepTest Clicker Questions
Physics 101: Lecture 22 Simple Harmonic Motion
Adapted from Holt book on physics
Simple Harmonic Motion
Moza M. Al-Rabban Professor of Physics
Physics 151: Lecture 31, Pg 1 Physics 151: Lecture 31 Today’s Agenda l Today’s Topics çSimple Harmonic Motion – masses on springs (Ch ) çEnergy.
UB, Phy101: Chapter 10, Pg 1 Physics 101: Lecture 17 Simple Harmonic Motion l Today’s lecture will cover Textbook Sections
Simple Harmonic Motion
AP Physics Review Ch 10 – Oscillatory Motion
Chapter 14 Oscillations Chapter Opener. Caption: An object attached to a coil spring can exhibit oscillatory motion. Many kinds of oscillatory motion are.
Oscillation.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Lecture 18 – Oscillations about Equilibrium
Oscillations Phys101 Lectures 28, 29 Key points:
Simple Harmonic Motion
Physics 101: Lecture 20, Pg 1 Physics 101: Lecture 20 Elasticity and Oscillations l Today’s lecture will cover Textbook Chapter Exam III.
CHAPTER 10 Elasticity and Oscillations
A mass on a spring in SHM has amplitude A and period T. What is the total distance traveled by the mass after a time interval T? 1) 0 2) A/2 3) A 4) 2A.
Energy And SHM. Energy of Spring Spring has elastic potential energy PE = ½ kx 2 If assuming no friction, the total energy at any point is the sum of.
AP Physics B Summer Course 年 AP 物理 B 暑假班 M Sittig Ch 17: Simple Harmonic Motion.
Physics 101: Lecture 19, Pg 1 Physics 101: Lecture 19 Elasticity and Oscillations Exam III.
Vibrations and Waves Hooke’s Law Elastic Potential Energy Comparing SHM with Uniform Circular Motion Position, Velocity and Acceleration.
Vibrations and Waves m Physics 2053 Lecture Notes Vibrations and Waves.
Simple Harmonic Motion. l Vibrations è Vocal cords when singing/speaking è String/rubber band l Simple Harmonic Motion è Restoring force proportional.
Vibrations and Waves.
Oscillations and Waves An oscillation is a repetitive motion back and forth around a central point which is usually an equilibrium position. A special.
Simple Harmonic Motion
Physics 101: Lecture 19, Pg 1 Physics 101: Lecture 19 Elasticity and Oscillations Exam III.
Copyright © 2009 Pearson Education, Inc. Chapter 14 Oscillations.
Lecture 19 Goals: Chapter 14 Assignment Periodic motion.
Copyright © 2009 Pearson Education, Inc. Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Simple Pendulum Lecture.
Physics 207: Lecture 19, Pg 1 Lecture 19Goals: Chapter 14 Chapter 14  Interrelate the physics and mathematics of oscillations.  Draw and interpret oscillatory.
Chapter 14 VIBRATIONS AND WAVES In this chapter you will:  Examine vibrational motion and learn how it relates to waves.  Determine how waves transfer.
Simple Harmonic Motion. Restoring Forces in Spring  F=-kx  This implies that when a spring is compressed or elongated, there is a force that tries to.
Physics 101: Lecture 20, Pg 1 Physics 101: Lecture 20 Elasticity and Oscillations Today’s lecture will cover Textbook Chapter Exam III Tuned.
Periodic Motion What is periodic motion?
{ SHM Simple Harmonic Motion. Simply put, simple harmonic motion is a motion ‘back and forth’ away from and back to equilibrium In SHM, the motion is.
Physics 101: Lecture 20, Pg 1 Physics 101: Lecture 20 Elasticity and Oscillations Today’s lecture will cover Textbook Chapter Exam III Hour.
Physics - Harmonic Motion We have been dealing with straight line motion or motion that is circular. There are other types of motion that must be dealt.
SIMPLE HARMONIC MOTION. STARTER MAKE A LIST OF OBJECTS THAT EXPERIENCE VIBRATIONS:
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Physics 101: Lecture 18, Pg 1 Physics 101: Lecture 18 Elasticity and Oscillations Exam III.
Oscillations. Periodic Motion Periodic motion is motion of an object that regularly returns to a given position after a fixed time interval A special.
Oscillations. Definitions Frequency If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time,
Lecture 18: Elasticity and Oscillations I l Simple Harmonic Motion: Definition l Springs: Forces l Springs: Energy l Simple Harmonic Motion: Equations.
Whenever the force acting on an object is: Whenever the force acting on an object is: 1. Proportional to the displacement 2. In the opposite direction,
Simple Harmonic Motion Periodic Motion Simple periodic motion is that motion in which a body moves back and forth over a fixed path, returning to each.
Physics 201: Lecture 28, Pg 1 Lecture 28 Goals Goals  Describe oscillatory motion  Use oscillatory graphs  Define the phase constant  Employ energy.
Physics 101: Lecture 19, Pg 1 Physics 101: Lecture 19 Elasticity and Oscillations II Exam III.
Any regular vibrations or oscillations that repeat the same movement on either side of the equilibrium position and are a result of a restoring force Simple.
S H M a n d W a v e s B a s i c s. T h e O s c i l l a t o r When displaced from its vertical equilibrium position, this plastic ruler oscillates back.
Springs & Simple Harmonic Motion
OSCILLATIONS (VIBRATIONS) SHM Oscillation (Vibration) Vibration: back and forth or up and down motion that repeats itself at equal intervals of time.
Physics 101: Lecture 20, Pg 1 Physics 101: Lecture 20 Elasticity and Oscillations l Today’s lecture will cover Textbook Chapter
Chapter 14 – Vibrations and Waves. Every swing follows the same path This action is an example of vibrational motion vibrational motion - mechanical oscillations.
Chapter 14 Periodic Motion © 2016 Pearson Education Inc.
Periodic Motion Oscillations: Stable Equilibrium: U  ½kx2 F  kx
Physics 101: Lecture 19 Elasticity and Oscillations II
Physics 101: Lecture 20 Elasticity and Oscillations
Physics 101: Lecture 20 Elasticity and Oscillations
Unit 1.1 Vibrations.
Harmonic Motion AP Physics C.
Harmonic Motion (IV) Energy of a simple harmonic oscillator
Gravity and Oscillations Oscillations
Gravity and Oscillations Oscillations
Simple Harmonic Motion and Wave Interactions
Physics 101: Lecture 19 Elasticity and Oscillations
Presentation transcript:

Physics 101: Lecture 20 Elasticity and Oscillations

Young’s Modulus Spring F = -k x What happens to “k” if cut spring in half? A) decreases B) same C) increases k is inversely proportional to length! Define Strain = DL / L المطاوعــة Stress = F/A الضغط Now Stress = Y Strain F/A = Y DL/L k = Y A/L from F = k x Or F = k DL Y (Young’s Modulus) independent of L 09

Review Energy in SHM A mass is attached to a spring and set to motion. The maximum displacement is x=A Energy = U + K = constant! = ½ k x2 + ½ m v2 At maximum displacement x=A, v = 0 Energy = ½ k A2 + 0 At zero displacement x = 0 Energy = 0 + ½ mvm2 ½ k A2 = ½ m vm2 vm = (k/m) A Analogy with gravity/ball x PES m x x=0 05

Kinetic Energy ACT ½kA2 = ½mvm2 In Case 1 a mass on a spring oscillates back and forth. In Case 2, the mass is doubled but the spring and the amplitude of the oscillation are the same as in Case 1. In which case is the maximum kinetic energy of the mass bigger? A. Case 1 B. Case 2 C. Same ½kA2 = ½mvm2 09

Potential Energy ACT In Case 1 a mass on a spring oscillates back and forth. In Case 2, the mass is doubled but the spring and the amplitude of the oscillation are the same as in Case 1. In which case is the maximum potential energy of the mass and spring bigger? A. Case 1 B. Case 2 C. Same Maximum displacement x = A Energy = ½ k A2 + 0 Same for both! 12

Velocity ACT In Case 1 a mass on a spring oscillates back and forth. In Case 2, the mass is doubled but the spring and the amplitude of the oscillation are the same as in Case 1. Which case has the larger maximum velocity? 1. Case 1 2. Case 2 3. Same Same maximum Kinetic Energy K = ½ m v2 smaller mass requires larger v 16

Simple Harmonic Motion: Quick Review x(t) = [A]cos(t) v(t) = -[A]sin(t) a(t) = -[A2]cos(t) x(t) = [A]sin(t) v(t) = [A]cos(t) a(t) = -[A2]sin(t) OR xmax = A vmax = A amax = A2 Period = T (seconds per cycle) Frequency = f = 1/T (cycles per second) Angular frequency =  = 2f = 2/T 19

Natural Period T of a Spring Simple Harmonic Oscillator w = 2 p f = 2 p / T x(t) = [A] cos(wt) v(t) = -[Aw] sin(wt) a(t) = -[Aw2] cos(wt) write F=ma -k x = m a -k A = m amax -k A = m (-A w2) Aw2 = (k/m) A w = (k/m) A,m,k dependence demo 23

Period ACT If the amplitude of the oscillation (same block and same spring) is doubled, how would the period of the oscillation change? (The period is the time it takes to make one complete oscillation) A. The period of the oscillation would double. B. The period of the oscillation would be halved C. The period of the oscillation would stay the same x +2A t -2A 27

Equilibrium position and gravity If we include gravity, there are two forces acting on mass. With mass, new equilibrium position has spring stretched d SFy = 0 kd – mg = 0 d = mg/k Let this point be y=0 SF = ma k(d-y) – mg = ma -k y = ma Same as horizontal! SHO New equilibrium position y=0 corresponds to height -d 31

Vertical Spring ACT Two springs with the same k but different equilibrium positions are stretched the same distance d and then released. Which would have the larger maximum kinetic energy? 1) M 2) 2M 3) Same PE = 1/2k y2 PE = 1/2k y2 Y=0 Just before being released, v=0 y=d Etot = 0 + ½ k d2 Same total energy for both When pass through equilibrium all of this energy will be kinetic energy again - same for both! Y=0 33

Pendulum Motion For small angles T = mg cos(q) = mg Bowling ball pendulum For small angles T = mg cos(q) = mg Tx = -mg sin(q) = -mg x/L Note: F proportional to x! S Fx = m ax -mg (x/L) = m ax ax = -(g/L) x Recall for SHO a = - w2 x w = (g/L) T = 2 p (L/g) Period does not depend on A, or m! q L T m x mg 37

Preflight 1 Suppose a grandfather clock (a simple pendulum) runs slow. In order to make it run on time you should: 1. Make the pendulum shorter 2. Make the pendulum longer CORRECT 38

Elevator ACT A pendulum is hanging vertically from the ceiling of an elevator. Initially the elevator is at rest and the period of the pendulum is T. Now the pendulum accelerates upward. The period of the pendulum will now be A. greater than T B. equal to T C. less than T g is effectively bigger, T is lower. 42

Preflight Imagine you have been kidnapped by space invaders and are being held prisoner in a room with no windows. All you have is a cheap digital wristwatch and a pair of shoes (including shoelaces of known length). Explain how you might figure out whether this room is on the earth or on the moon “Since you know the length of the shoelace then you can build a pendulum and see how long it takes for one period. If its longer than what you expect on earth than you must be on the moon, if its the same you're on earth.” 50

Alien Preflight “You could drop a shoe from a known height and also measure the time it takes for the shoe to hit the ground. Then you can use x=xo + vot + 1/2at2 to find the acceleration. The shoe starts at rest (vo=0). If the acceleration is less than 9.8, you're on the moon.” “I could jump. that would be enough really. The gravitational difference is quite significant between the two. but I suppose I could make a pendulum of the watch and shoelace if I wanted to do extra work and was bored.” “I have absolutely no idea. I have been studying for the exam tonight since last sunday, and all day today. I came home from the exam only to slave over the physics homework until now, and now I'm doing this preflight. I am on physics OVERLOAD and going cross eyed. I seriously think that it is cruel and unfair that we have a homework due after a test. As for this pendulum, I think that you could tie a shoe to a shoelace and start it swinging in a pendulum motion. The period of the pendulum (T) could be approximated by 2*Pi *square root (length of shoelaces/g). You have your watch to time the pendulum, and so you could determine if g is the acceleration of the Earth (9.8) or a martian planet!” 46

Alien Preflight “First you tie both shoe laces together and attach that to the shoe. this will give you a good amount of torque because the radius is longer. then you pretend to have a heart attack. After a while, the aliens will most likely come and check on you. once they do, get up, start swinging the shoe lace/shoe combo and hit one of them in the face. if there is another one, throw your other shoe at him. if there are even more, headbutt them into oblivion. continue headbutting into oblivion until all the aliens are down. find the main control center and pilot the space ship to the nearest pawn shop and sell the space ship for one gazillion dollars and 33 cents. get 33 cents in pennies and start throwing them at the aliens until they tell you were they took you. the end. or since small oscillations depend on gravity, you can tie the shoe laces to the shoe. then figure out what 2*pi*sqrt(L/9.8) is and then swing the 'pendulum' and see if the period for that is the same.” 46

Summary Simple Harmonic Motion Springs Pendulum (Small oscillations) Occurs when have linear restoring force F= -kx x(t) = [A] cos(wt) v(t) = -[Aw] sin(wt) a(t) = -[Aw2] cos(wt) Springs F = -kx U = ½ k x2 w = sqrt(k/m) Pendulum (Small oscillations) w = (g/L) *incorrect in lecture notes 50