Galvanic Cell Device in which chemical energy is changed to electrical energy. Uses a spontaneous redox reaction to produce a current that can be used.

Slides:



Advertisements
Similar presentations
Cells and Voltage.
Advertisements

Chapter 17 Electrochemistry
Galvanic Cells What will happen if a piece of Zn metal is immersed in a CuSO 4 solution? A spontaneous redox reaction occurs: Zn (s) + Cu 2 + (aq) Zn 2.
Galvanic Cell.
Standard Cell Notation (line notation)
Electrochemistry 18.1 Balancing Oxidation–Reduction Reactions
Chapter 18 Electrochemistry. Chapter 18 Table of Contents Copyright © Cengage Learning. All rights reserved Balancing Oxidation–Reduction Equations.
Chapter 21: Electrochemistry I Chemical Change and Electrical Work 21.1 Half-Reactions and Electrochemical Cells 21.2 Voltaic Cells: Using Spontaneous.
Chapter 17 Electrochemistry  Redox review (4.9)   
Chapter 20 – Redox Reactions One of the earliest recognized chemical reactions were with oxygen. Some substances would combine with oxygen, and some would.
Electrochemistry Applications of Redox. Review l Oxidation reduction reactions involve a transfer of electrons. l OIL- RIG l Oxidation Involves Loss l.
Section 10.3—Batteries & Redox Reactions
GALVANIC AND ELECTROLYTIC CELLS
LO 3.2 The student can translate an observed chemical change into a balanced chemical equation and justify the choice of equation type (molecular, ionic,
1 Chapter Eighteen Electrochemistry. 2 Electrochemical reactions are oxidation-reduction reactions. The two parts of the reaction are physically separated.
Chapter 18 Electrochemistry. Chapter 18 Table of Contents Copyright © Cengage Learning. All rights reserved Balancing Oxidation–Reduction Equations.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois.
Electrochemistry The study of the interchange of chemical and electrical energy.
Copyright © Houghton Mifflin Company. All rights reserved.17a–1.
Voltaic Cells/Galvanic Cells and Batteries. Background Information Electricity is the movement of electrons, and batteries are an important source of.
Galvanic Cells ELECTROCHEMISTRY/CHEMICAL REACTIONS SCH4C/SCH3U.
BATTERIES AND CELLS.
Galvanic Cell Concept Separating the oxidation and reduction half-reactions will make it so the energy in the electron transfer can be harnessed. A salt.
Electrochemistry An electrochemical cell produces electricity using a chemical reaction. It consists of two half-cells connected via an external wire with.
ELECTROCHEMICAL CELLS. ELECTROCHEMISTRY The reason Redox reactions are so important is because they involve an exchange of electrons If we can find a.
10.3 Half-reactions and electrodes
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
Electrochemistry Sam Pomichter Introduction Oxidation- the loss of electrons Reduction- the gain of electrons We can identify oxidation-reduction.
Chapter 18 Electrochemistry Lesson 1. Electrochemistry 18.1Balancing Oxidation–Reduction Reactions 18.2 Galvanic Cells 18.3 Standard Reduction Potentials.
Warm up 3/17/15 Balance the half reaction. Ch. 17 Electrochemistry.
Electrochemistry Interchange of electrical and chemical energy.
Zn (s) + Cu2+ (aq)  Zn2+ (aq) + Cu (s)
ELECTROCHEMICAL CELLS Chapter 20 : D8 C20
H.W. # 22 Study pp (sec – 18.3) Ans. ques. p. 879 # 41,
Electrochemistry Lesson 2
You will have to completely label a diagram to look like this
17.1 Galvanic Cells (Batteries)
Oxidation Numbers Rules for Assigning Oxidation States
Electrochemistry.
Review of Terms Electrochemistry – the study of the interchange of chemical and electrical energy Oxidation–reduction (redox) reaction – involves a transfer.
Electrochemistry Chapter 20.
Zn(s) + CuSO4(aq)→ ZnSO4 (aq) + Cu(s)
Cell Potential.
Electrochemistry Ch 13 pg 225 Princeton Review.
Electrochemistry Applications of Redox.
Review of Terms Electrochemistry – the study of the interchange of chemical and electrical energy Oxidation–reduction (redox) reaction – involves a transfer.
Electrochemistry Generating Voltage (Potential)
14.2a Voltaic Cells Basic Function.
Advanced Higher Chemistry Unit 2(e)
Chapter 17: Electrochemistry
Electrochemistry.
Galvanic Cell Concept Separating the oxidation and reduction half-reactions will make it so the energy in the electron transfer can be harnessed. A salt.
Electrochemistry- Balancing Redox Equations
Electrochemistry.
Chem 132- General Chemistry II
Chemistry/Physical Setting
Electrochemistry Applications of Redox.
You will have to completely label a diagram to look like this
Electrochemistry The study of the interchange
Electrochemistry Chapter 18.
AP Chem Get HW checked Work on oxidation # review
Chapter 21: Electrochemistry
Voltaic (Galvanic)Cells
AP Chem Get HW checked Take out laptops and go to bit.ly/GalCell
Electrochemistry.
18.2 Balancing Oxidation-Reduction Equations
Electrochemical Cells
Chapter 21 Thanks to D Scoggin Cabrillo College
Zn (s) + Cu2+ (aq)  Zn2+ (aq) + Cu (s)
Galvanic Cells Assignment # 17.1.
Presentation transcript:

Galvanic Cell Device in which chemical energy is changed to electrical energy. Uses a spontaneous redox reaction to produce a current that can be used to do work. Copyright © Cengage Learning. All rights reserved

A Galvanic Cell Copyright © Cengage Learning. All rights reserved

Galvanic Cell Oxidation occurs at the anode. Reduction occurs at the cathode. Salt bridge or porous disk – devices that allow ions to flow without extensive mixing of the solutions. Salt bridge – contains a strong electrolyte held in a Jello–like matrix. Porous disk – contains tiny passages that allow hindered flow of ions. Copyright © Cengage Learning. All rights reserved

Cell Potential A galvanic cell consists of an oxidizing agent in one compartment that pulls electrons through a wire from a reducing agent in the other compartment. The “pull”, or driving force, on the electrons is called the cell potential ( ), or the electromotive force (emf) of the cell. Unit of electrical potential is the volt (V). 1 joule of work per coulomb of charge transferred. Copyright © Cengage Learning. All rights reserved

Voltaic Cell: Cathode Reaction To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright © Cengage Learning. All rights reserved

Voltaic Cell: Anode Reaction To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright © Cengage Learning. All rights reserved

Galvanic Cell All half-reactions are given as reduction processes in standard tables. Table 18.1 1 M, 1atm, 25°C When a half-reaction is reversed, the sign of E° is reversed. When a half-reaction is multiplied by an integer, E° remains the same. A galvanic cell runs spontaneously in the direction that gives a positive value for E°cell. Copyright © Cengage Learning. All rights reserved

Example: Fe3+(aq) + Cu(s) → Cu2+(aq) + Fe2+(aq) Half-Reactions: Fe3+ + e– → Fe2+ E° = 0.77 V Cu2+ + 2e– → Cu E° = 0.34 V To balance the cell reaction and calculate the cell potential, we must reverse reaction 2. Cu → Cu2+ + 2e– – E° = – 0.34 V Each Cu atom produces two electrons but each Fe3+ ion accepts only one electron, therefore reaction 1 must be multiplied by 2. 2Fe3+ + 2e– → 2Fe2+ E° = 0.77 V Copyright © Cengage Learning. All rights reserved

Overall Balanced Cell Reaction 2Fe3+ + 2e– → 2Fe2+ E° = 0.77 V (cathode) Cu → Cu2+ + 2e– – E° = – 0.34 V (anode) Balanced Cell Reaction: Cu + 2Fe3+ → Cu2+ + 2Fe2+ Cell Potential: E°cell = E°(cathode) – E°(anode) E°cell = 0.77 V – 0.34 V = 0.43 V Copyright © Cengage Learning. All rights reserved

CONCEPT CHECK! Order the following from strongest to weakest oxidizing agent and justify. Of those you cannot order, explain why. Fe Na F- Na+ Cl2 Cl2 is a better oxidizing agent than Na+ (Cl2 has the larger reduction potential). The others cannot be ordered because we do not know their reduction potentials (although we can predict that F- will not easily be reduced, we do not have knowledge of quantitative proof from Table 18.1).

Line Notation Used to describe electrochemical cells. Anode components are listed on the left. Cathode components are listed on the right. Separated by double vertical lines which indicated salt bridge or porous disk. The concentration of aqueous solutions should be specified in the notation when known. Example: Mg(s)|Mg2+(aq)||Al3+(aq)|Al(s) Mg → Mg2+ + 2e– (anode) Al3+ + 3e– → Al (cathode) Copyright © Cengage Learning. All rights reserved

Description of a Galvanic Cell The cell potential (always positive for a galvanic cell where E°cell = E°(cathode) – E°(anode)) and the balanced cell reaction. The direction of electron flow, obtained by inspecting the half–reactions and using the direction that gives a positive E°cell. Copyright © Cengage Learning. All rights reserved

Description of a Galvanic Cell Designation of the anode and cathode. The nature of each electrode and the ions present in each compartment. A chemically inert conductor is required if none of the substances participating in the half–reaction is a conducting solid. Copyright © Cengage Learning. All rights reserved

Sketch a cell using the following solutions and electrodes. Include: CONCEPT CHECK! Sketch a cell using the following solutions and electrodes. Include: The potential of the cell The direction of electron flow Labels on the anode and the cathode Ag electrode in 1.0 M Ag+(aq) and Cu electrode in 1.0 M Cu2+(aq) Copper is the anode, silver is the cathode (electrons flow from copper to silver). The cell potential is 0.46 V. Copyright © Cengage Learning. All rights reserved

Sketch a cell using the following solutions and electrodes. Include: CONCEPT CHECK! Sketch a cell using the following solutions and electrodes. Include: The potential of the cell The direction of electron flow Labels on the anode and the cathode Zn electrode in 1.0 M Zn2+(aq) and Cu electrode in 1.0 M Cu2+(aq) Zinc is the anode, copper is the cathode (electrons flow from zinc to copper). The cell potential is 1.10 V. Copyright © Cengage Learning. All rights reserved

CONCEPT CHECK! Consider the cell from part b. What would happen to the potential if you increase the [Cu2+]? Explain. Since the copper(II) ion is the reactant in the overall equation of the cell, the cell potential should increase (LeChâtelier's principle applies here). Copyright © Cengage Learning. All rights reserved