Factoring Trinomials.

Slides:



Advertisements
Similar presentations
Factoring Trinomials.
Advertisements

Factoring Trinomials.
Factoring Trinomials.
FACTORING TRINOMIALS OF THE FORM X 2 +BX+C Section 6.2.
Factoring a Quadratic Trinomial Step 2: Insert the two numbers that have a product of c and a sum of b. 2 and 5 are the factors of 10 that add up to 7.
To factor a trinomial of the form: x2 + bx + c
1 7.5 Factoring Trinomials CORD Math Mrs. Spitz Fall 2006.
Table of Contents Factoring – Review of Basic Factoring The following is a quick review of basic factoring 1.Common Factor Example 1:
Solve Notice that if you take ½ of the middle number and square it, you get the last number. 6 divided by 2 is 3, and 3 2 is 9. When this happens you.
Multiply. (x+3)(x+2) x x + x x Bellringer part two FOIL = x 2 + 2x + 3x + 6 = x 2 + 5x + 6.
Quadratics – Completing the Square A Perfect Square Trinomial is any trinomial that is the result of squaring a binomial. Example 1: Binomial Squared Perfect.
The Greatest Common Factor; Factoring by Grouping
Objective 1.Factor quadratic trinomials of the form x2 + bx + c.
Factoring Part 3. FACTORING #1: Take out the GCFEX: 2x 4 – 8x 3 + 4x 2 – 6x How to do it…. Find what is in common in each term and put in front. See what.
Chapter 6 Section 2. Objectives 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Factoring Trinomials Factor trinomials with a coefficient of 1.
A)Factoring by Decomposition Factoring Polynomials: Type 2: Quadratic Trinomials with a Leading coefficient = 1 1.Multiply a and c 2.Look for two numbers.
Martin-Gay, Beginning Algebra, 5ed 22 Example Solution Think of FOIL in reverse. (x + )(x + ) We need 2 constant terms that have a product of 12 and a.
Unit 8, Lesson 7a. (x+3)(x+2) Multiplying Binomials (FOIL) FOIL = x 2 + 2x + 3x + 6 = x 2 + 5x + 6.
Factor the following special cases
Factor Trinomials 8-4 page 107, example 1 2x 2 – 15x+ 18 When the last term is positive, what are the signs? Both positive? Both negative? Mixed? (+)(+)
Factoring Example 1: What is the Greatest Common Factor (GCF) of the two terms below? Example 2: Example 3:
Factoring Trinomials Chapter 10.4 Part 2. Review: Factoring Quadratic Trinomials Find the factors of the last term. Which of those factors combine to.
Multiplying Conjugates The following pairs of binomials are called conjugates. Notice that they all have the same terms, only the sign between them is.
Copyright © 2014, 2010, and 2006 Pearson Education, Inc. Chapter 5 Polynomials and Factoring.
Polynomials Interpret the Structure of an Expression (MCC9-12.A.SSE.1a.b) Perform Arithmetic Operations on Polynomials (MCC9-12.A.APR.1)
4.4 Factoring Quadratic Expressions Learning Target: I can find common binomial factors of quadratic expressions. Success Criteria: I can find the factors.
Factoring Trinomials.
Entry Task Anthony has 10 feet of framing and wants to use it to make the largest rectangular picture frame possible. Find the maximum area that can be.
Copy each problem. Then factor.
Factoring x2 + bx + c Section 8-5.
FACTORING TRINOMIALS with leading coefficient
Factoring when a=1 and c > 0.
Solution Think of FOIL in reverse. (x + )(x + )
Chapter 7 Factoring. Chapter 7 Factoring 7.2 Factoring Trinomials.
Factoring Polynomials
Multiplying Binomials and Special Cases
Factoring trinomials ax² + bx +c a = 1
Factoring Trinomials A
Factoring Trinomials.
Factoring Polynomials 3
Factoring.
4.4A Factoring: Leading Coefficient ≠1
Chapter 6 Section 2.
Factoring & Special Cases--- Week 13 11/4
Factoring Trinomials.
4.4 Factoring Polynomials
Factoring Factoring is a method to find the basic numbers and variables that made up a product. (Factor) x (Factor) = Product Some numbers are Prime, meaning.
Factoring Trinomials.
Example 1A: Factoring Trinomials by Guess and Check
Algebra 1 Section 10.3.
Factoring Trinomials.
3.6B Factoring Trinomials
Concept 2 Difference of Squares.
Factoring Trinomials Day 2
AIM: FACTORING POLYNOMIALS WITH A=1
3.6-A Factoring Trinomials
The Greatest Common Factor
Factoring trinomials of the form: ax2+bx+c
Chapter 6 Section 2.
Factoring a Trinomial with a Front “a” Coefficient
4.6 Factoring Polynomials
Factoring Trinomials.
Factoring Trinomials.
Factoring Trinomials.
Factoring Quadratic Trinomials ax2+bx+c
There is a pattern for factoring trinomials of this form, when c
Factoring Trinomials.
Factoring Trinomials a = 1
Factoring Trinomials.
Standard Form The standard form of any quadratic trinomial is a=3 b=-4
Presentation transcript:

Factoring Trinomials

Multiplying Binomials (FOIL) Multiply. (x+3)(x+2) Distribute. x • x + x • 2 + 3 • x + 3 • 2 F O I L = x2+ 2x + 3x + 6 = x2+ 5x + 6

Factoring Trinomials x2 + 7x + 12 Again, we will factor trinomials such as x2 + 7x + 12 back into binomials. This method does not use tiles, instead we look for the pattern of products and sums! If the x2 term has no coefficient (other than 1)... x2 + 7x + 12 Step 1: List all pairs of numbers that multiply to equal the constant, 12. 12 = 1 • 12 = 2 • 6 = 3 • 4

Factoring Trinomials (Method 2) x2 + 7x + 12 Step 2: Choose the pair that adds up to the middle coefficient. 12 = 1 • 12 = 2 • 6 = 3 • 4 Step 3: Fill those numbers into the blanks in the binomials: ( x + )( x + ) 3 4 x2 + 7x + 12 = ( x + 3)( x + 4)

Factoring Trinomials (Method 2) Factor. x2 + 2x - 24 This time, the constant is negative! Step 1: List all pairs of numbers that multiply to equal the constant, -24. (To get -24, one number must be positive and one negative.) -24 = 1 • -24, -1 • 24 = 2 • -12, -2 • 12 = 3 • -8, -3 • 8 = 4 • -6, - 4 • 6 Step 2: Which pair adds up to 2? Step 3: Write the binomial factors. x2 + 2x - 24 = ( x - 4)( x + 6)

Factoring Trinomials (Method 2*) Factor. 3x2 + 14x + 8 This time, the x2 term DOES have a coefficient (other than 1)! Step 1: Multiply 3 • 8 = 24 (the leading coefficient & constant). 24 = 1 • 24 = 2 • 12 = 3 • 8 = 4 • 6 Step 2: List all pairs of numbers that multiply to equal that product, 24. Step 3: Which pair adds up to 14?

Factoring Trinomials (Method 2*) Factor. 3x2 + 14x + 8 Step 4: Write temporary factors with the two numbers. ( x + )( x + ) 2 12 3 3 Step 5: Put the original leading coefficient (3) under both numbers. 4 2 ( x + )( x + ) 12 3 Step 6: Reduce the fractions, if possible. 2 ( x + )( x + ) 4 3 ( 3x + 2 )( x + 4 ) Step 7: Move denominators in front of x.

Factoring Trinomials (Method 2*) Factor. 3x2 + 14x + 8 You should always check the factors by distributing, especially since this process has more than a couple of steps. ( 3x + 2 )( x + 4 ) = 3x • x + 3x • 4 + 2 • x + 2 • 4 = 3x2 + 14 x + 8 √ 3x2 + 14x + 8 = (3x + 2)(x + 4)

Factoring Trinomials (Method 2*) Factor 3x2 + 11x + 4 This time, the x2 term DOES have a coefficient (other than 1)! Step 1: Multiply 3 • 4 = 12 (the leading coefficient & constant). 12 = 1 • 12 = 2 • 6 = 3 • 4 Step 2: List all pairs of numbers that multiply to equal that product, 12. Step 3: Which pair adds up to 11? None of the pairs add up to 11, this trinomial can’t be factored; it is PRIME.

Factor These Trinomials! Factor each trinomial, if possible. The first four do NOT have leading coefficients, the last two DO have leading coefficients. Watch out for signs!! 1) t2 – 4t – 21 2) x2 + 12x + 32 3) x2 –10x + 24 4) x2 + 3x – 18 5) 2x2 + x – 21 6) 3x2 + 11x + 10

Solution #1: t2 – 4t – 21 t2 – 4t – 21 = (t + 3)(t - 7) 1) Factors of -21: 1 • -21, -1 • 21 3 • -7, -3 • 7 2) Which pair adds to (- 4)? 3) Write the factors. t2 – 4t – 21 = (t + 3)(t - 7)

Solution #2: x2 + 12x + 32 x2 + 12x + 32 = (x + 4)(x + 8) 1) Factors of 32: 1 • 32 2 • 16 4 • 8 2) Which pair adds to 12 ? 3) Write the factors. x2 + 12x + 32 = (x + 4)(x + 8)

Solution #3: x2 - 10x + 24 x2 - 10x + 24 = (x - 4)(x - 6) 1) Factors of 32: 1 • 24 2 • 12 3 • 8 4 • 6 -1 • -24 -2 • -12 -3 • -8 -4 • -6 2) Which pair adds to -10 ? None of them adds to (-10). For the numbers to multiply to +24 and add to -10, they must both be negative! 3) Write the factors. x2 - 10x + 24 = (x - 4)(x - 6)

Solution #4: x2 + 3x - 18 x2 + 3x - 18 = (x - 3)(x + 18) 1) Factors of -18: 1 • -18, -1 • 18 2 • -9, -2 • 9 3 • -6, -3 • 6 2) Which pair adds to 3 ? 3) Write the factors. x2 + 3x - 18 = (x - 3)(x + 18)

Solution #5: 2x2 + x - 21 2x2 + x - 21 = (x - 3)(2x + 7) 1) Multiply 2 • (-21) = - 42; list factors of - 42. 1 • -42, -1 • 42 2 • -21, -2 • 21 3 • -14, -3 • 14 6 • -7, -6 • 7 2) Which pair adds to 1 ? 3) Write the temporary factors. ( x - 6)( x + 7) 2 2 4) Put “2” underneath. 3 ( x - 6)( x + 7) 2 5) Reduce (if possible). 6) Move denominator(s)in front of “x”. ( x - 3)( 2x + 7) 2x2 + x - 21 = (x - 3)(2x + 7)

Solution #6: 3x2 + 11x + 10 3x2 + 11x + 10 = (3x + 5)(x + 2) 1) Multiply 3 • 10 = 30; list factors of 30. 1 • 30 2 • 15 3 • 10 5 • 6 2) Which pair adds to 11 ? 3) Write the temporary factors. ( x + 5)( x + 6) 3 3 4) Put “3” underneath. 2 ( x + 5)( x + 6) 3 5) Reduce (if possible). 6) Move denominator(s)in front of “x”. ( 3x + 5)( x + 2) 3x2 + 11x + 10 = (3x + 5)(x + 2)