De Morgan’s laws presentation
De Morgan’s laws De Morgan’s laws allow us to simplify Boolean expressions that use AND or OR. They can be summarised as: Invert the inputs Combine them using the ‘other’ operation Invert the result
De Morgan’s laws Law 1 ———— A + B = A . B
De Morgan’s laws Law 1 ———— A + B = A . B Law 2 ———— A . B = A + B
De Morgan’s laws To see why the first law is true, draw up a truth table: A B 1
De Morgan’s laws Invert input A: __ A B 1
De Morgan’s laws Invert input B: A B 1 __ __
A B A . B 1 De Morgan’s laws ‘AND’ the two inverted inputs …. __ __ __ __ __ A B A . B 1 __ __
A B A . B 1 De Morgan’s laws …. and finally, invert again : ——— __ __ __ __ ——— A B A . B 1 __ __
A B A+B A . B 1 De Morgan’s laws So the truth tables for both sides of law 1 are identical A B A+B A . B 1 ———
A B 1 De Morgan’s laws The second law can be verified in the same way: 1 Pause here for students to work it out on paper.
De Morgan’s laws Invert input A: A B 1 __
De Morgan’s laws Invert input B: A B 1 __ __
A B A + B 1 De Morgan’s laws ‘OR’ the two inverted inputs …. __ __ __ __ __ A B A + B 1 __ __
A B A + B 1 De Morgan’s laws …. and finally, invert again : ——— __ __ __ __ ——— A B A + B 1 __ __
A B A . B A + B 1 De Morgan’s laws So the truth tables for both sides of law 2 are identical A B A . B A + B 1 ———