SURFACE COLOR AND SHADOWS

Slides:



Advertisements
Similar presentations
A Common Framework for Ambient Illumination in the Dichromatic Reflectance Model Color and Reflectance in Imaging and Computer Vision Workshop 2009 October.
Advertisements

Effect of Test Patch Location on Color Appearance, in the Context of 3D Objects Bei Xiao and David H.Brainard University of Pennsylvania.
Illumination Estimation via Thin Plate Spline Weihua Xiong ( OmniVision Technology,USA ) Lilong Shi, Brian Funt ( Simon Fraser University, Canada) ( Simon.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm Lecture #12.
Spherical Convolution in Computer Graphics and Vision Ravi Ramamoorthi Columbia Vision and Graphics Center Columbia University SIAM Imaging Science Conference:
Color.
Color Image Understanding Sharon Alpert & Denis Simakov.
SPECULAR FLOW AND THE PERCEPTION OF SURFACE REFLECTANCE Stefan Roth * Fulvio Domini † Michael J. Black * * Computer Science † Cognitive and Linguistic.
Foreground Modeling The Shape of Things that Came Nathan Jacobs Advisor: Robert Pless Computer Science Washington University in St. Louis.
Color Image Processing
Shape-from-X Class 11 Some slides from Shree Nayar. others.
Physics-based Illuminant Color Estimation as an Image Semantics Clue Christian Riess Elli Angelopoulou Pattern Recognition Lab (Computer Science 5) University.
December 5, 2013Computer Vision Lecture 20: Hidden Markov Models/Depth 1 Stereo Vision Due to the limited resolution of images, increasing the baseline.
1 Practical Scene Illuminant Estimation via Flash/No-Flash Pairs Cheng Lu and Mark S. Drew Simon Fraser University {clu,
BMVC 2009 Specularity and Shadow Interpolation via Robust Polynomial Texture Maps Mark S. Drew 1, Nasim Hajari 1, Yacov Hel-Or 2 & Tom Malzbender 3 1 School.
1 A Markov Random Field Framework for Finding Shadows in a Single Colour Image Cheng Lu and Mark S. Drew School of Computing Science, Simon Fraser University,
School of Computer Science Simon Fraser University November 2009 Sharpening from Shadows: Sensor Transforms for Removing Shadows using a Single Image Mark.
Laurent Itti: CS599 – Computational Architectures in Biological Vision, USC Lecture 10: Color Perception. 1 Computational Architectures in Biological.
Color Image Understanding Sharon Alpert & Denis Simakov.
Real-Time High Quality Rendering COMS 6160 [Fall 2004], Lecture 4 Shadow and Environment Mapping
Color, lightness & brightness Lavanya Sharan February 7, 2011.
Colour Constancy T.W. Hung. Colour Constancy – Human A mechanism enables human to perceive constant colour of a surface over a wide range of lighting.
1 Lecture 9 Lighting Light Sources Reflectance Camera Models.
Basic Principles of Surface Reflectance Lecture #3 Thanks to Shree Nayar, Ravi Ramamoorthi, Pat Hanrahan.
Statistical Color Models (SCM) Kyungnam Kim. Contents Introduction Trivariate Gaussian model Chromaticity models –Fixed planar chromaticity models –Zhu.
Research & Innovation 1 An Industry Perspective on VVG Research Oliver Grau BBC Research & Innovation VVG SUMMER SCHOOL '07.
Computer Vision Spring ,-685 Instructor: S. Narasimhan PH A18B T-R 10:30am – 11:50am Lecture #13.
Memory color effects of natural objects on color constancy
Computer Graphics An Introduction. Computer Graphics 26/9/2008Lecture 12 What’s this course all about? We will cover… Graphics programming and algorithms.
Computer Graphics An Introduction. What’s this course all about? 06/10/2015 Lecture 1 2 We will cover… Graphics programming and algorithms Graphics data.
November 2012 The Role of Bright Pixels in Illumination Estimation Hamid Reza Vaezi Joze Mark S. Drew Graham D. Finlayson Petra Aurora Troncoso Rey School.
Color Perception How your eye/brain processes colors.
03/05/03© 2003 University of Wisconsin Last Time Tone Reproduction If you don’t use perceptual info, some people call it contrast reduction.
Global Illumination Models THE WHITTED IMAGE - BASIC RECURSIVE RAY TRACING Copyright © 1997 A. Watt and L. Cooper.
Image-Based Rendering of Diffuse, Specular and Glossy Surfaces from a Single Image Samuel Boivin and André Gagalowicz MIRAGES Project.
Course Introduction to virtual engineering Óbuda University John von Neumann Faculty of Informatics Institute of Applied Mathematics Lecture and laboratory.
Color and Brightness Constancy Jim Rehg CS 4495/7495 Computer Vision Lecture 25 & 26 Wed Oct 18, 2002.
Local Illumination and Shading
1Ellen L. Walker 3D Vision Why? The world is 3D Not all useful information is readily available in 2D Why so hard? “Inverse problem”: one image = many.
+ Lighting for photography. + Terminology Intensity: Strength of a light source Illumination: Amount of light falling on a surface Brightness: The appearance.
Vision is created by utilizing two properties of light, energy(intensity) and frequency (wavelength) of stimulus.
1 What do color changes reveal about an outdoor scene? KalyanFabianoWojciechToddHanspeter SunkavalliRomeiroMatusikZicklerPfister Harvard University Adobe.
CHF 0.52 v’ 0.45 GT EC 0.16 u’ 0.24 BRM A D65 CHF GT EC JA D65 A EC BRM CHF GT CHF GT EC JA D65 A #1255 S URFACE C OLOR AND S PECULARITY : T ESTING THE.
MAN-522 Computer Vision Spring
Processing visual information for Computer Vision
SPECULAR FLOW AND THE PERCEPTION OF SURFACE REFLECTANCE
Color Image Processing
Color Image Processing
Jun Shimamura, Naokazu Yokoya, Haruo Takemura and Kazumasa Yamazawa
Intrinsic images and shape refinement
ECE 638: Principles of Digital Color Imaging Systems
Ch. 3 The Human Color-Imaging System
Color Image Processing
From: Surface color perception and equivalent illumination models
Journal of Vision. 2016;16(15):21. doi: / Figure Legend:
Figure Legend: From: The color constancy of three-dimensional objects
Manipulation in Human Environments
Merle Norman Cosmetics, Los Angeles
ECE 638: Principles of Digital Color Imaging Systems
Common Classification Tasks
Color Image Processing
Computer Vision Computer vision attempts to construct meaningful and explicit descriptions of the world depicted in an image Using machines to Interpret!!!
Brief Review of Recognition + Context
Human Perception 9: Color.
Visual Motion and the Perception of Surface Material
An Algorithm of Eye-Based Ray Tracing on MATLAB
Experiencing the World
Specularity, the Zeta-image, and Information-Theoretic Illuminant
Shape from Shading and Texture
J. Trommershäuser, L. T. Maloney , M. S
Presentation transcript:

SURFACE COLOR AND SHADOWS TESTING THE D’ZMURA-IVERSON MODEL Laurence T. Maloney Joong Nam Yang Psychology and Neural Science Visual Sciences Center New York University University of Chicago ARVO 2000 May 3, 2000 Ft. Lauderdale, Florida

1. Cues to the Illuminant

Surface Color Perception [I]n our observations with the sense of vision, we always start out by forming a judgment about the colours of bodies, eliminating the differences of illumination by which a body is revealed to us. von Helmholtz

Illuminant Chromaticity

Illuminant Surfaces Photoreceptor Array

Surface Color Algorithms Maloney (1999)

Cues to the Illuminant Reference Surfaces Subspace Constraints Brill (1978) Buchsbaum (1980) Subspace Constraints Maloney & Wandell (1986) D’Zmura & Iverson (1993) Chromatic Aberration Funt & Ho (1990) and more ……. Specularity Lee (1986) D’Zmura & Lennie (1986) Mutual Illumination Drew & Funt (1990) Shadow Edge Cue D’Zmura & Iverson (1994) Maloney (1999)

UNIFORM BACKGROUND CUE

SPECULAR HIGHLIGHT CUE

D’ZMURA-LENNIE-LEE CUE Matte Contamination Problem Specular Matte 1 Matte 2

SHADOW EDGE CUE D’Zmura (1992)

Illuminant Cue Combination Cue Promotion Uniform Background Specular Highlight Illuminant Estimate Scene DZ-D-L Specularity Shadow Dynamic Re-Weighting Maloney (1999)

2. Perturbation Methods

Perturbation Methods target A base D65 perturbed Specular information perturbed ….. Yang, Maloney & Landy, ARVO, 1999

? v’ u’ JNY Target A Base D65 Perturbed Illuminant D65 (matte) Illuminant A (specular) u’

? v’ u’ JNY Target A Base D65 Perturbed Illuminant D65 (matte) Illuminant A (specular) u’

? v’ u’ JNY Target A Base D65 Perturbed Illuminant D65 (matte) Illuminant A (specular) u’

v’ u’ CHF GT EC BRM Yang, Maloney & Landy, ARVO, 1999 0.52 0.45 0.52 0.16 0.20 0.24 0.16 0.20 0.24 u’ Yang, Maloney & Landy, ARVO, 1999

Average Scene Chromaticity CHF V’ u’ Yang, Maloney & Landy, ARVO, 1999

3. Methods

Multi-Channel Rendering 1 N = 12 RADIANCE Larson (1992) 400 l 700

Stimulus Stereo Pairs D65 A RADIANCE

SHADOW EDGE CUE D65

SHADOW EDGE CUE A

SHADOW EDGE CUE Perturbed

Perturbation Methods target A base D65 perturbed Specular information perturbed …..

Achromatic Matching

4. Results

D65 A D65 A GT GT v’ 0.52 0.45 v’ 0.52 0.45 0.16 0.20 0.24 0.16 0.20 0.24 u’ u’

D65 A D65 A JLS JLS v’ 0.52 0.45 v’ 0.52 0.45 0.16 0.20 0.24 0.16 0.20 0.24 u’ u’

D65 A D65 A JNY JNY v’ 0.52 0.45 v’ 0.52 0.45 0.16 0.20 0.24 0.16 0.20 0.24 u’ u’

SUMMARY There are several candidate illuminant cues. A specularity cue influences human color vision (Yang, Maloney & Landy, 1999). The shadow edge cue does not influence human color vision, for our choice of scene. Supported by NIH/NEI EY08266

D65 A A D65

Photoreceptor Excitations