BaBar-France meeting, LPNHE, Paris

Slides:



Advertisements
Similar presentations
Measurements of the angle  : ,  (BaBar & Belle results) Georges Vasseur WIN`05, Delphi June 8, 2005.
Advertisements

Measurements of the angles of the Unitarity Triangle at B A B AR Measurements of the angles of the Unitarity Triangle at B A B AR PHENO06 Madison,15-18.
Measurements of sin2  from B-Factories Masahiro Morii Harvard University The BABAR Collaboration BEACH 2002, Vancouver, June 25-29, 2002.
Feasibility of sin  Measurement From Time Distribution of B 0  DK S Decay Vivek Sharma University of California San Diego.
CP Violation Reach at Very High Luminosity B Factories Abi Soffer Snowmass 2001 Outline: Ambiguities B  DK B  D*     etc. B  D*  a 0   etc. (“designer.
Probing The B 0  D 0 K 0 System: A Quick Update Vivek Sharma University of California San Diego.
Current Methods of determining V ub I. Endpoint of the inclusive lepton spectrum II. Exclusive decays Methods of determining V ub with small theoretical.
Status report B  D 0 K  0 decay G.Calderini M.Carpinelli N.Neri BaBar Italia Capri 11 Apr 2003 INFN Pisa.
Search for B     with SemiExclusive reconstruction C.Cartaro, G. De Nardo, F. Fabozzi, L. Lista Università & INFN - Sezione di Napoli.
Measurements of  and future projections Fabrizio Bianchi University of Torino and INFN-Torino Beauty 2006 The XI International Conference on B-Physics.
Hot Topics from BaBar Fabrizio Bianchi INFN, Torino (on behalf of the BaBar Collaboration) Direct CP Violation in (hep-ex/ ) Observation of and search.
B Decays to Open Charm (an experimental overview) Yury Kolomensky LBNL/UC Berkeley Flavor Physics and CP Violation Philadelphia, May 18, 2002.
Preliminary Measurement of the BF(   → K -  0  ) using the B A B AR Detector Fabrizio Salvatore Royal Holloway University of London for the B A B AR.
The BaBarians are coming Neil Geddes Standard Model CP violation BaBar Sin2  The future.
Measurement of the Branching fraction B( B  D* l ) C. Borean, G. Della Ricca G. De Nardo, D. Monorchio M. Rotondo Riunione Gruppo I – Napoli 19 Dicembre.
Luca Lista L.Lista INFN Sezione di Napoli Rare and Hadronic B decays in B A B AR.
DPF 2009 Richard Kass 1 Search for b → u transitions in the decays B → D (*) K - using the ADS method at BaBar Outline of Talk *Introduction/ADS method.
Philip J. Clark University of Edinburgh Rare B decays The Royal Society of Edinburgh 4th February 2004.
Max Baak1 Impact of Tag-side Interference on Measurement of sin(2  +  ) with Fully Reconstructed B 0  D (*)  Decays Max Baak NIKHEF, Amsterdam For.
Todd K. Pedlar The Ohio State University for the CLEO Collaboration Recent Results in B and D Decays from CLEO BEACH 2002, Vancouver June 26, 2002.
1 Multi-body B-decays studies in BaBar Ben Lau (Princeton University) On behalf of the B A B AR collaboration The XLIrst Rencontres de Moriond QCD and.
Pavel Krokovny Heidelberg University on behalf of LHCb collaboration Introduction LHCb experiment Physics results  S measurements  prospects Conclusion.
Pavel Krokovny, KEK Measurement of      1 Measurements of  3  Introduction Search for B +  D (*)0 CP K +  3 and r B from B +  D 0 K + Dalitz.
CP-Violating Asymmetries in Charmless B Decays: Towards a measurement of  James D. Olsen Princeton University International Conference on High Energy.
Sergey Burdin FNAL DØ Collaboration 8/12/2005 Chicago Flavor New Bs Mixing Result from DØ.
CP Violation Studies in B 0  D (*)  in B A B A R and BELLE Dominique Boutigny LAPP-CNRS/IN2P3 HEP2003 Europhysics Conference in Aachen, Germany July.
Maria Różańska, INP Kraków HEP2003 Europhysics Conference –Aachen, July 18th 1 CPV in B → D (*) K (*) (and B → D K  ) in BaBar and Belle Outline: CPV.
Measurement of  2 /  using B   Decays at Belle and BaBar Alexander Somov CKM 06, Nagoya 2006 Introduction (CP violation in B 0   +   decays) Measurements.
Andrzej Bożek for Belle Coll. I NSTITUTE OF N UCLEAR P HYSICS, K RAKOW ICHEP Beijing 2004  3 and sin(2  1 +  3 ) at Belle  3 and sin(2  1 +  3 )
5 Jan 03S. Bailey / BaBar : B decays to Measure gamma1 B Decays to Measure  Stephen Bailey Harvard University for the BaBar Collaboration PASCOS 2003.
Search for the decay with the BaBar detector at SLAC Hella Snoek Nikhef Monday Dec Part I One way of measuring γ Part II Analysis.
Guglielmo De Nardo for the BABAR collaboration Napoli University and INFN ICHEP 2010, Paris, 23 July 2010.
Belle and Belle II Akimasa Ishikawa (Tohoku University)
Measurements of   Denis Derkach Laboratoire de l’Accélérateur Linéaire – ORSAY CNRS/IN2P3 FPCP-2010 Turin, 25 th May, 2010.
Status of K± p±p0 E. De Lucia.
Charmless Hadronic B Decays at BaBar
Tree-level New Physics searches in semileptonic decays at Belle
Reaching for  (present and future)
fully reconstructed B’s in B-factory experiments
Search for b → u transitions in B+ → {Kpp0}DK+
Theoretical Motivation Analysis Procedure Systematics Results
Recent B physics results from BABAR and BELLE
Time-dependent analyses at D0-D0 threshold
γ determination from tree decays (B→DK) with LHCb
Light particle searches at Belle
Radiative and electroweak penguin processes in exclusive B decays
Max Baak, NIKHEF on behalf of the BABAR and BELLE Collaborations
CKM Status In this lecture, we study the results summarized in this plot. November 17, 2018 Sridhara Dasu, CKM Status.
Search for CP Violating Decays of theU(4S)
University of South Alabama
ВД в эксперименте по измерению масс
Measurements of g and sin(2b+g ) in BaBar
Precision Leptonic, Semileptonic and Hadronic Decays of the D
Measurements of some J/ and c decays at BES
W boson helicity measurement
Semileptonic decay of D0  l and form factors
Direct CP Violation in Observation of and search for
B  at B-factories Guglielmo De Nardo Universita’ and INFN Napoli
Charmless Quasi-two-Body Modes at BaBar
Gabriella Sciolla (MIT)
How charm data may help for φ3 measurement at B-factories
First discovery of Double Cabbibo-Suppressed decay: Lc  pK+p- + a
Extreme Penguins: Tools requirements at the analysis frontier
Hot Topic from Belle : Recent results on quarkonia
B DK strategies in LHCb (part II)
Sin(2β) measurement with b→c transitions in BaBar
Branching Fractions and CP Violation in BdKK at BaBar
Time dependent measurements of gamma at LHCb Angelo Carbone (INFN-Bologna) on behalf of LHCb collaboration CKM 2008 Roma, 12 September 2008.
Observation of non-BBar decays of (4S)p+p- (1S, 2S)
Measurements of sin(2b + g) / sin(2f1 + f3)
Presentation transcript:

BaBar-France meeting, 16.10.2008 LPNHE, Paris B+->D(*)+K(*)0 D. Derkach ( ) , V. Sordini, A. Stocchi (LAL) BaBar-France meeting, 16.10.2008 LPNHE, Paris

Outline motivation of the study; analysis strategy; recent results; perspectives.

Gamma measurement (from CKM08) g = 88 ± 16 ([41,123] @ 95% Prob.) g = -92 ± 16 ([-139,-57] @ 95% Prob.) Sensitivity on g crucially depends on the value of the r parameter

Today I’ll concentrate on annihilation.. The amplitudes for B->DK decays can be written in terms of common parameters (Assuming SU(2) symmetry) Vcb Vub Unknowns:

What if?.. The two ratios are correlated

rB+->rB0 Using the branching ratios and assuming rB value we can predict rB0, neglecting annihilation Example with the results pre-ICHEP08 Annihilation can play a role in  giving different rB+ for different modes (DK,D*K,DK*)  different predictions and errors for the corresponding rB0  It is also interesting per se.. see following

Annihilation can be neglected ? { b d B+ d K0 u s

{ { } Decays proceeding only through annihilation diagrams: Some measurements have been already performed Vcb b { c s l2  (fB/m) ~l2  l2 B0 s K+ d u d b B0 { c Vcb Vus u s } K0 l2  l Br(DsK) = (2.8 ± 0.5) × 10-5 Br(D0K) = (5.2 ± 0.7) × 10-5 Br(D*sK) = (2.2 ± 0.5) × 10-5 Br(D*0K) = (3.6 ± 0.7) × 10-5 Br(D0K*0) = (4.2 ± 0.6) × 10-5 l2  ln n~1 ? l2 or l ? Dominated by something else ?

{ Indeed we can have large final states rescattering u s Vus d b c Vcb K+ B0 s d d Large RESCATTERING Amplitudes B. Blok, M. Gronau, J. Rosner, Phys.Rev.Lett.78:3999-4002,1997

{ { l3  l l3  (fB/m) ~l3  l2 ~l3  l In the charged B->DK system. Question b { u Vub c l3  l B+ Vcs s K+ u u c { b l3  (fB/m) ~l3  l2 u B+ u K+ u If dominated by rescattering s ~l3  l Considering the previous case we can say that: Typical order of magnitude of a Color suppressed Vub mediated (we have to use B0) Br(B0 D0 K0 ) = (rB )2( 5.2 ±0.7) 10-5 ~ 5 10-6 rB ~ 0.3

We can measure annihilation diagram related to the previous one by SU(2): { b d B+ d K0 u s c d Vus s b { u Vcb K0 B+ d u u Following the previous arguments : Br(B+ D+ K0 ) = can be up to 5 10-6 Let’s try to measure it

Previous Analysis Previous analysis: F. Polci, R. Faccini, C. Voena BAD 830, 1035: Negative fluctuation : N = -2.9 +- 6.6 expected limit 7*10-6

Choice of Channels Branching ratio of the signal is normalized to 5*10-6 Channels Used Efficiency in previous analysis Efficiency after reconstruction Matched after reconstruction Nevents rest for analysis, assuming BR=5*10-6 D+-->K0sp+ (18.8±1.4)% (49.3±0.5)% (41.1±0.5)% (3.3±0.2) D+-->K0sp+p0 (38.1±0.4)% (21.4±0.3)% (8.3±0.5) D+-->K-p+p+ (18.4±0.5)% (50.5±0.5)% (41.7±0.5)% (31.3±1.3) D+-->K-p+p+p0 (40.8±0.5)% (20.2±0.3)% (9.5±0.5)

Strategy preselection; cut optimization; Fisher discriminant; peaking background; parameterization; Toy MC studies; Combination of channels.

20K each secondary decay channel Data Sets Sample Number of Events Lumi, fb-1 On-resonance data - Run1-Run6 Signal MC 20K each secondary decay channel 80K-1000K B0B0bar MC 736M 1337 B+B- MC 731M 1329 ccbar MC 1132M 871 uds MC 938M 449 Dedicated peaking background >2000

Cut Optimization Maximizing

Cut Table (Example of for B->DK, D->Kpp) signal error efficiency B+B- B0B0bar ccbar uds Drho Dpi D0K0 D*0K*0 S 1 preselecton 30.8 0.34 40.9% 10811.9 9009.1 190707.8 136149.7 581.3 95.3 70.2 41.0 0.052 2 PK > 0.2, Pp >0.15 29.6 0.33 39.4% 9737.6 8075.7 178663.4 127507.9 545.2 80.6 56.9 36.4 3 |MD-MPDG|<0.012 25.0 0.31 33.3% 1714.3 1956.7 39570.1 22330.7 357.3 20.2 9.1 7.5 0.097 4 |DEB|<0.02 0.28 26.9% 487.2 561.5 11399.2 6410.4 102.3 7.8 2.9 2.3 0.147 5 |cosQB_cm|<0.76 18.9 0.27 25.2% 398.9 460.1 9022.3 5089.7 86.1 5.9 1.6 0.154 6 |MK_s-MPDG|<0.006 17.6 0.26 23.5% 181.6 217.5 5396.0 2938.7 36.3 2.0 0.188 7 log(aKs +1)<-8 17.1 0.25 22.7% 53.3 79.0 3559.9 1733.4 7.2 1.0 0.232 8 |cosqHelr|<0.8 14.1 0.23 18.7% 36.6 55.6 2812.8 1352.6 1.1 0.7 0.215 9 mes>5.27 4.9 9.8 355.0 197.7 0.6 0.0 1.3 0.582 10 Fisher>0. 9.5 0.19 12.6% 5.2 43.4 23.3 0.3 1.024

Fisher Fisher discriminant was trained with the same set of observables for all the channels: Peaking background

Parameterization of mes Continuum background. Argus BBbar background. Argus Signal Gaussian BBbar peaking background (before some cuts) Crystal ball

Parameterization of Fisher Continuum background. Double Bifurcated Gaussian BBbar background. Gaussian Signal Double Bifurcated Gaussian BBbar peaking background (before some cuts) Gaussian

ToyMC studies Free parameters of the fit: Nsig, Nbbbar, Ncontinuum, Shape of the Argus function for continuum background Continuum Mean 0.00 RMS 1.01 Argus Shape Mean -0.01 RMS 1.01 BBbar Mean 0.02 RMS 1.00

Number of generated events = 14.2 Average error = 11.2 events Mean 14.0 Signal Mean -0.05 RMS 1.02

Sensitivity for Kpipi channel With 0 generated events we get an error of 3.8*10-6

The complete analysis has been done for other channels. The details are not given D+->K0sp+ signal efficiency B+B- B0B0bar ccbar uds Drho Dpi D0K0 D*0K*0 s Cuts 1,7 21,3% 3,9 8,8 403,5 248,0 0,3 1,3 0,0 0,066 mes>5.27 1,6 2,6 47,9 34,9 0,7 0,181 Fisher>0 1,2 14,7% 1,0 8,5 0,291 D+->K0sp+p0 signal efficiency B+B- B0B0bar ccbar uds Drho Dpi D0K0 D*0K*0 Drho-pi0 Dpi-pi0 s Cuts 2,4 6,2% 20,3 29,9 1390,2 843,9 1,0 0,0 0,3 0,050 mes>5.27 6,5 4,6 149,3 95,9 0,7 0,148 Fisher>0 1,9 4,9% 2,3 21,5 22,3 0,253 D+->K-p+p+p0 signal efficiency B+B- B0B0bar ccbar uds Drho Dpi D0K0 D*0K*0 Drho-pi0 Dpi-pi0 S Cuts 2,6 5,5% 97,5 139,2 5112,4 2573,5 1,3 0,0 3,3 0,030 mes>5.27 12,4 21,5 600,2 291,6 0,7 1,6 1,0 0,086 Fisher>0 1,9 4,1% 9,2 12,7 92,9 26,2 0,161

Combination of ToyMC With 0 generated events we get an error of 3*10-6 To compare with ~5.5 10-6 of the previous analysis

Tagging Categories? Could we improve our sensitivity ? Lepton Kaon 1 KaonPion+Pion+Other+No tag

Lepton Tagging Category signal B+B- B0B0bar ccbar uds Drho Dpi D0K0 D*0K*0 S 1 preselecton 3,0 157,7 181,4 1303,3 387,6 20,1 0,3 2,6 0,067 2 PK > 0.2, Pp >0.15 2,9 142,7 1224,9 362,4 18,5 2,0 3 |MD-MPDG|<0.012 2,5 25,5 55,6 302,6 58,1 13,7 0,0 1,0 0,115 4 |DEB|<0.02 6,9 17,6 86,9 25,2 3,6 0,168 5 |cosQB_cm|<0.76 1,9 5,9 13,3 70,9 18,4 3,5 0,174 6 |MK_s-MPDG|<0.006 1,7 4,9 49,9 12,6 0,9 0,202 7 log(aKs +1)<-8 1,3 2,3 34,0 8,7 0,2 0,241 8 |cosqHelr|<0.8 1,4 0,7 1,6 26,0 0,227 9 mes>5.27 1,5 0,662 10 Fisher>0. 0,814 Notice that for the lepton category no background is expected… ( and about 1 event at Br = 5 10-6)

Kaon1 Tagging Category mes>5.27 Fisher>0. signal B+B- B0B0bar ccbar uds Drho Dpi D0K0 D*0K*0 S 1 preselecton 3,6 457,1 533,2 11257,9 10186,3 35,3 5,5 3,9 0,024 2 PK > 0.2, Pp >0.15 3,4 409,4 475,7 10540,8 9539,0 32,8 4,9 2,9 3 |MD-MPDG|<0.012 68,7 123,9 2248,6 1631,7 21,0 0,7 1,0 0,0 0,045 4 |DEB|<0.02 2,3 16,7 30,2 647,7 480,6 5,0 0,068 5 |cosQB_cm|<0.76 2,2 14,4 24,4 520,3 394,4 0,3 0,071 6 |MK_s-MPDG|<0.006 2,0 5,9 11,4 306,6 263,5 1,6 0,083 7 log(aKs +1)<-8 1,9 4,2 195,7 176,3 0,5 0,099 8 |cosqHelr|<0.8 151,3 129,8 0,096 9 mes>5.27 23,0 21,3 0,240 10 Fisher>0. 1,1 2,5 0,525

Kaon2 Tagging Category preselecton signal B+B- B0B0bar ccbar uds Drho Dpi D0K0 D*0K*0 S 1 preselecton 5,5 1570,7 1358,1 25383,0 20259,1 88,9 18,9 12,4 8,8 0,025 2 PK > 0.2, Pp >0.15 5,2 1400,5 1211,8 23750,7 18909,4 83,1 14,6 10,4 8,1 3 |MD-MPDG|<0.012 4,4 246,1 289,0 5026,0 3199,4 54,0 2,0 1,6 0,047 4 |DEB|<0.02 3,6 68,1 77,7 1418,7 919,5 14,9 2,9 0,3 0,072 5 |cosQB_cm|<0.76 3,4 54,3 61,1 1139,5 742,2 12,3 2,6 0,075 6 |MK_s-MPDG|<0.006 3,2 28,1 30,6 674,1 442,8 5,7 0,7 0,093 7 log(aKs +1)<-8 3,1 8,2 13,0 424,9 282,0 0,9 0,115 8 |cosqHelr|<0.8 2,5 4,6 336,1 217,0 0,2 0,0 0,106 9 mes>5.27 1,0 45,9 29,1 0,286 10 Fisher>0. 1,7 0,544

All Other Tagging Categories signal B+B- B0B0bar ccbar uds Drho Dpi D0K0 D*0K*0 S 1 preselecton 18,7 8782,7 7088,2 155017,7 107020,1 447,8 74,1 53,0 28,6 0,035 2 PK > 0.2, Pp >0.15 18,0 7901,2 6344,3 145141,5 100197,0 420,3 63,1 42,6 24,7 3 |MD-MPDG|<0.012 15,2 1378,6 1494,0 32090,8 17498,7 270,0 14,6 5,2 5,9 0,066 4 |DEB|<0.02 12,3 395,9 436,3 9255,5 4991,9 78,9 4,9 1,6 2,0 0,100 5 |cosQB_cm|<0.76 11,5 324,6 361,2 7296,5 3939,6 66,6 3,3 1,3 0,105 6 |MK_s-MPDG|<0.006 10,7 145,9 170,7 4368,3 2221,7 28,1 0,129 7 log(aKs +1)<-8 10,4 40,9 59,5 2907,2 1268,3 5,7 0,7 0,158 8 |cosqHelr|<0.8 8,5 29,1 40,6 2301,5 999,0 0,9 1,0 0,146 9 mes>5.27 4,3 284,6 146,3 0,5 0,0 0,398 10 Fisher>0. 2,9 35,5 19,4 0,3 0,685

Perspectives Interest of measuring annihilation in Vub mediated processes. An error at 3*10-6 can be obtained for BR(B+  D+K0). Progress/work to do : The error can be further improved (flavor tagging) Analysis on data Analysis for other channels D+K*0 and D*+K0

Backup

Choice of Channels Branching ratio of the signal is normalized to 5*10-6 Channels Used Efficiency in previous analysis Efficiency after reconstruction Real events after reconstruction Nevents rest for analysis, assuming BR=5*10-6 D*+-->D0p+ D0-->K-p+ (18.9±0.9)% (40.0±0.4)% (36.3±0.4)% (7.5±0.3) D0-->K-p+p0 (6.79±0.3)% (26.4±0.4)% (19.8±0.3)% (14.3±0.8) D0-->K-p+p+p- (10.5±0.5)% (29.6±0.4)% (23.6±0.3)% (9.8±0.3) D0-->Ks0p+p- (10.8±1.0)% (24.0±0.3)% (19.9±0.3)% (2.1±0.2)

Choice of Channels Branching ratio of the signal is normalized to 5*10-6 Channels Used Efficiency after reconstruction Real events after reconstruction Nevents rest for analysis, assuming BR=5*10-6 D+-->K0sp+ (39.3±0.4)% (30.8±0.4)% (4.8±0.2) D+-->K0sp+p0 (29.8±0.4)% (15.9±0.3)% (12±1) D+-->K-p+p+ (41.7±0.5)% (27.0±0.4)% (39±1) D+-->K-p+p+p0 (34.6±0.4)% (15.1±0.3)% (13.8±0.8)

Method of Combination for ToyMC 1. Generate one ToyMC 2. 3. 4. Produce a lot of ToyMC and produce a combination

{ { } } } Idea, Vcb channel u b B+ c Vcb Vus s K+ u b B+ c Vcb Vus s

Idea, Vcb channel } d b B0 { c Vcb Vus u s } K+

Idea, Vcb channel d b B0 { c Vcb Vus u s } K0

Idea, SU(2) symmetry

Idea

Idea SU(2)

Idea SU(2)

Equations & Unknowns Unknowns: We solve these equation in Bayesian approach using flat priors for T, C, f and assuming the branching ratios to be Gaussian.

Results

Result

Idea, Vub channel b { u Vub c Vcs s B+ K+ u u u { b c B+ s K+ u u

Idea, Vub channel d { b c B+ s K0 u d

Idea, Vub channel u } { b Vub c Vcs } B+ s K0 d d

Idea

Putting all together Unknowns: