Current and Resistance

Slides:



Advertisements
Similar presentations
Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current.
Advertisements

CH 20-1.
Current and Resistance
1 Chapter 17 Current and Resistance. 2 Electric Current Whenever electric charges of like signs move, an electric current is said to exist Whenever electric.
Chapter 17 Current Electricity. Conductors  Conductors are materials in which the electric charges move freely Copper, aluminum and silver are good conductors.
PHY 2054: Physics II. Calculate the Electric Field at P Calculate the el. potential at P.
UNIT 9 Electrostatics and Currents 1. Thursday March 22 nd 2 Electrostatics and Currents.
Chapter 17 Current and Resistance. Electric Current Let us look at the charges flowing perpendicularly to a surface of area A The electric current is.
Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge flows through.
Chapter 17 Current and Resistance. Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is.
Current and Resistance
Chapter 17 Current and Resistance. Bright Storm on Electric Current.
15/20/2015 General Physics (PHY 2140) Lecture 6  Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current.
Physics for Scientists and Engineers II, Summer Semester Lecture 8: June 8 th 2009 Physics for Scientists and Engineers II.
1 Chapter 27 Current and Resistance. 2 Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current.
Chapter 26 Lect. 11: Current. Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the.
Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The.
-Electric Current -Resistance -Factors that affect resistance -Microscopic View of Current AP Physics C Mrs. Coyle.
Chapter 24 Electric Current. The electric current I is the rate of flow of charge through some region of space The SI unit of current is Ampere (A): 1.
Current and Direct Current Circuits
Current and Resistance. The Starting Point: Elements, Atoms and Charge Electrons and protons have, in addition to their mass, a quantity called charge.
Chapter 27 Current Resistance And Resistor. Review The current is defined and its unit is ampere (A), a base unit in the SI system I A The.
19/19/2015 Applied Physics Lecture 8  Electrodynamics Electric current current and drift speed resistance and Ohm’s law resistivity temperature variation.
P212c26: 1 Charge carrier motion in a conductor in two parts Constant Acceleration Randomizing Collisions (momentum, energy) =>Resulting Motion Average.
Chapter 17 Current and Resistance. Electric Current Let us look at the charges flowing perpendicularly to a surface of area A The electric current is.
 I1I1   R R R I2I2 I3I3 Lecture 11 Current & Resistance.
Electric Current and Resistance Unit 16. Electric Current  The current is the rate at which the charge flows through a surface Look at the charges flowing.
Electric Forces and Fields Chapter 16. Electrical Field Maxwell developed an approach to discussing fields An electric field is said to exist in the region.
Chapter 17 Current and Resistance. General Physics Current, Resistance, and Power Ch 17, Secs. 1–4, 6–7 (skip Sec. 5)
Current � and � Resistance Electric Current Resistance and Ohm’s Law A Model for Electrical Conduction Resistance and Temperature Superconductor Electrical.
Current Electricity Parallel CircuitSeries Circuit.
Chapter 21-part1 Current and Resistance. 1 Electric Current Whenever electric charges move, an electric current is said to exist Whenever electric charges.
Current and Resistance FCI.  Define the current.  Understand the microscopic description of current.  Discuss the rat at which the power.
Current & Resistance - Current and current density - Ohm’s Law - Resistivity - Resistance.
Chapter 27 Current and Resistance. Electric Current The electric current I is the rate of flow of charge through some region of space The SI unit of current.
Chapter 17 Current and Resistance. Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is.
Chapter 27 Current Resistance And Resistor. Electric Current, the definition Assume charges are moving perpendicular to a surface of area A If ΔQ is the.
Current and Resistance
Current and Resistance FCI.  Define the current.  Understand the microscopic description of current.  Discuss the rat at which the power.
Chapter 26 Lecture 21: Current: I. Types of Capacitors – Variable Variable capacitors consist of two interwoven sets of metallic plates One plate is fixed.
Chapter 27: Current and Resistance
Chapter 27: Current and Resistance Fig 27-CO, p Electric Current 27.2 Resistance and Ohm’s Law 27.4 Resistance and Temperature 27.6 Electrical.
Dr. Jie ZouPHY Chapter 27 Current and Resistance.
Chapter 27 Current Resistance And Resistor. Review The current is defined and its unit is ampere (A), a base unit in the SI system I A The.
Ohm’s Law PSSA Requirement Unit 9 Honors Physics.
Chapter 27 Current And Resistance. Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current.
-Electric Current -Resistance -Factors that affect resistance -Microscopic View of Current AP Physics C Mrs. Coyle.
Chapter 22 Electric Current. The Electric Battery A battery transforms chemical energy into electrical energy. Chemical reactions within the cell create.
Chapter 25: Current, Resistance and Electromotive Force
Current and Resistance
Announcements final exam average (excluding regrades): 74.6%
Current Electricity Parallel Circuit Series Circuit.
Current and Resistance
Announcements Chapter 17 covers current and resistance
Stuff Ya Gotta Know: Current and Resistance Current and Resistance
Chapter 24 Electric Current.
Current and Resistance
Announcements Prof. Reitze will be giving this week’s lectures on Ch. 17 Chapter 17 covers current and resistance WebAssign HW Set 4 due this Friday Problems.
Current and Resistance
Question of the day What additional quantities are necessary to describe the behavior of an electric field when the charge moves?
General Physics (PHY 2140) Lecture 7
Chapter 31 #1-14.
Ch 17 Electrical Energy and Current
Microscopic Model of Conduction
Electrical Energy and Current
Current and Resistance
Current and Resistance
Current and Resistance
Current and Resistance
Electrical Energy and Current
Presentation transcript:

Current and Resistance Chapter 17 Current and Resistance

17.1 Electric Current Whenever electric charges move, an electric current is said to exist The current is the rate at which the charge flows through a certain cross-section For the current definition, we look at the charges flowing perpendicularly to a surface of area A

Definition of the current: Charge in motion through an area A. The time rate of the charge flow through A defines the current (=charges per time): I=DQ/Dt Units: C/s=As/s=A SI unit of the current: Ampere + -

Electric Current, cont The direction of current flow is the direction positive charge would flow This is known as conventional (technical) current flow, i.e., from plus (+) to minus (-) However, in a common conductor, such as copper, the current is due to the motion of the negatively charged electrons It is common to refer to a moving charge as a mobile charge carrier A charge carrier can be positive or negative

17.2 Current and Drift Speed Charged particles move through a conductor of cross-sectional area A n is the number of charge carriers per unit volume V (=“concentration”) nADx=nV is the total number of charge carriers in V

Current and Drift Speed, cont The total charge is the number of carriers times the charge per carrier, q (elementary charge) ΔQ = (nAΔx)q [unit: (1/m3)(m2 m)As=C] The drift speed, vd, is the speed at which the carriers move vd = Δx/Δt Rewritten: ΔQ = (nAvdΔt)q Finally, current, I = ΔQ/Δt = nqvdA Δx

Current and Drift Speed, final If the conductor is isolated, the electrons undergo (thermal) random motion When an electric field is set up in the conductor, it creates an electric force on the electrons and hence a current

Charge Carrier Motion in a Conductor The electric field force F imposes a drift on an electron’s random motion (106 m/s) in a conducting material. Without field the electron moves from P1 to P2. With an applied field the electron ends up at P2’; i.e., a distance vdDt from P2, where vd is the drift velocity (typically 10-4 m/s).

qvd (-q)(-vd) = qvd E vd E vd Does the direction of the current depend on the sign of the charge? No! qvd E vd (a) Positive charges moving in the same direction of the field produce the same positive current as (b) negative charges moving in the direction opposite to the field. E vd (-q)(-vd) = qvd

Current density: J=I/A= nqvdA/A=nqvd The current per unit cross-section is called the current density J: J=I/A= nqvdA/A=nqvd In general, a conductor may contain several different kinds of charged particles, concentrations, and drift velocities. Therefore, we can define a vector current density: J=n1q1vd1+n2q2vd2+… Since, the product qvd is for positive and negative charges in the direction of E, the vector current density J always points in the direction of the field E.

Example: An 18-gauge copper wire (diameter 1.02 mm) carries a constant current of 1.67 A to a 200 W lamp. The density of free electrons is 8.51028 per cubic meter. Find the magnitudes of (a) the current density and (b) the drift velocity.  

Solution: (a) A=d2p/4=(0.00102 m)2p/4=8.210-7 m2 J=I/A=1.67 A/(8.210-7 m2)=2.0106 A/m2 (b) From J=I/A=nqvd, it follows: vd=1.510-4 m/s=0.15 mm/s

17.3 Electrons in a Circuit The drift speed is much smaller than the average speed between collisions When a circuit is completed, the electric field travels with a speed close to the speed of light Although the drift speed is on the order of 10-4 m/s the effect of the electric field is felt on the order of 108 m/s

Meters in a Circuit – Ammeter An ammeter is used to measure current In line with the bulb, all the charge passing through the bulb also must pass through the meter (in series!)

Meters in a Circuit - Voltmeter A voltmeter is used to measure voltage (potential difference) Connects to the two ends of the bulb (parallel)

QUICK QUIZ 17.2 Look at the four “circuits” shown below and select those that will light the bulb.

17.4 Resistance and Ohm’s law In a homogeneous conductor, the current density is uniform over any cross section, and the electric field is constant along the length. b a V=Va-Vb=EL

Resistance The ratio of the potential drop to the current is called resistance of the segment: Unit: V/A=W (ohm)

Resistance, cont Units of resistance are ohms (Ω) 1 Ω = 1 V / A Resistance in a circuit arises due to collisions between the electrons carrying the current with the fixed atoms inside the conductor

V  I  V=const.I  V=RI Ohm’s Law Ohm’s Law is an empirical relationship that is valid only for certain materials Materials that obey Ohm’s Law are said to be ohmic I=V/R R, I0, open circuit; R0, I, short circuit

Ohm’s Law, final Ohmic Nonohmic Plots of V versus I for (a) ohmic and (b) nonohmic materials. The resistance R=V/I is independent of I for ohmic materials, as is indicated by the constant slope of the line in (a). Nonohmic