July 13-25, 2000, Hanoi, Vietnam Aurelio Bay Institut de Physique

Slides:



Advertisements
Similar presentations
LHCb Alignment 12 th April 2007 S. Viret Coseners Forum « LHC Startup » 1. Introduction 2. The alignment challenge 3. Conclusions.
Advertisements

7 Nov 2002Niels Tuning - Vertex A vertex trigger for LHCb The trigger for LHCb ….. and the use of the Si vertex detector at the first and second.
27 th June 2008Johannes Albrecht, BEACH 2008 Johannes Albrecht Physikalisches Institut Universität Heidelberg on behalf of the LHCb Collaboration The LHCb.
LHC SPS PS. 46 m 22 m A Toroidal LHC ApparatuS - ATLAS As large as the CERN main bulding.
Description of BTeV detector Jianchun Wang Syracuse University Representing The BTeV Collaboration DPF 2000 Aug , 2000 Columbus, Ohio.
Aurelio Bay Institut de Physique des Hautes Energies July 13-25, 2000, Hanoi, Vietnam.
FPCP04, Daegu, 9 Oct 2004P J Dornan - Imperial College London1 B-Physics at the LHC P J Dornan Imperial College, London.
1 Performance of the LHCb VELO Outline LHCb Detector and its performance in Run I LHCb Detector and its performance in Run I LHCb VELO LHCb VELO VELO performance.
Physics Performance of LHC-B Neville Harnew University of Oxford Beauty-97, Los Angeles October Outline Introduction The LHC-B Experiment New.
Cano Ay, Johannes Gutenberg Universität, B mixing and flavor oscillations at DØ Cano Ay University Mainz for the DØ Collaboration 23 may.
DIS 2004, Strbske Pleso,April LHCb experiment sensitivity to CKM phases and New Physics from mixing and CP violation measurements in B decays LHCb.
C. K. MackayEPS 2003 Electroweak Physics and the Top Quark Mass at the LHC Kate Mackay University of Bristol On behalf of the Atlas & CMS Collaborations.
1 1 The LHCb Upgrade Outline LHCb Detector LHCb Detector Selected Physics Results Selected Physics Results Upgrade Plans Upgrade Plans Summary Summary.
The RICH Detectors of the LHCb Experiment Carmelo D’Ambrosio (CERN) on behalf of the LHCb RICH Collaboration LHCb RICH1 and RICH2 The photon detector:
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Particle Identification with the LHCb Experiment
1 LHCb: Reoptimized Detector & Tracking Performance LHCb: Reoptimized Detector & Tracking Performance Gerhard Raven NIKHEF and VU, Amsterdam Representing.
2 nd Workshop on CKM Unitarity Triangle – April 5-9, 2003, DurhamMassimiliano Ferro-Luzzi 1 The LHCb trigger strategy and performance Overview Level-0Detectors,
Clara MatteuzziFPCP, Paris 2-6 june 2003 The LHCb experiment: status and physics program Clara Matteuzzi On behalf of the LHCb collaboration Università.
DØ Beauty Physics in Run II Rick Jesik Imperial College BEACH 2002 V International Conference on Hyperons, Charm and Beauty Hadrons Vancouver, BC, June.
1 Experimental Particle Physics PHYS6011 Fergus Wilson, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
27/02/2014 INSTR14 S.Filippov1 First Years of Running for the LHCb Calorimeter System Sergey Filippov (Institute for Nuclear Research of RAS, Moscow) on.
The Ring Imaging Cherenkov Detectors for LHCb Antonis Papanestis CCLRC – RAL On behalf of the LHCb RICH group.
Design and performance of the ALICE Muon Spectrometer
The New CHOD detector for the NA62 experiment at CERN S
The LHCb Calorimeter system
IOP HEPP Conference Upgrading the CMS Tracker for SLHC Mark Pesaresi Imperial College, London.
future CP violation Experiment
Richard Jacobsson, CERN
THE CERN Experiment P326 for Rare Kaon Decays
On behalf of the LHCb collaboration
Hadron Physics Lecture Week
Kevin Burkett Harvard University June 12, 2001
Physics with the LHCb calorimeter
LHCb Status and Prospects Doris Eckstein (CERN) on behalf of the LHCb Collaboration 3rd International Conference on Flavor Physics Chungli, Taiwan,
The LHCb Upgrade Outline LHCb Detector Selected Physics Results
Prospects for New Physics in CP Violation and Rare Decays at LHCb
Detector Concepts Target/Luminosity Additions: Recoil detector
LHCb Physics, Status, and Perspectives
The LHC collider in Geneva
Particle Identification in LHCb
The LHCb Experiment On behalf of the LHCb Collaboration
The Pixel Hybrid Photon Detectors of the LHCb RICH
Multianode Photo Multipliers for Ring Imaging Cherenkov Detectors
FRONTIERS OF MATTER XI th RENCONTRES DE BLOIS
Lepton Number and Lepton Flavour Violation
LHCb Status and Prospects Doris Eckstein (CERN) on behalf of the LHCb Collaboration 3rd International Conference on Flavor Physics Chungli, Taiwan,
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 6th May 2009 Fergus Wilson, RAL.
Niels Tuning (Outer Tracker Group LHCb)
The LHCb vertex detector
Overview of LHCb Poland Ukraine Brazil UK Switzerland France Spain
B physics prospects at LHCb
Event Reconstruction and Physics Performance of the LHCb Experiment
LHCb Particle Identification and Performance
Performance Studies for the LHCb Experiment
T. Bowcock University of Liverpool For the LHCb Collaboration
8th International Conference on Advanced Technology and
Particle Identification with the LHCb Experiment
B Physics at the LHC Neville Harnew University of Oxford.
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 28th April 2008 Fergus Wilson. RAL.
The Large Hadron Collider beauty Experiment & Physics
The LHCb Level 1 trigger LHC Symposium, October 27, 2001
Background rejection in P326 (NA48/3)
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL
Università di Milano Bicocca LHC2003 International Symposium
LHCb Trigger LHCb Trigger Outlook:
How can we study the magnetic distortion effect?
Luminosity Measurement in the
Presentation transcript:

July 13-25, 2000, Hanoi, Vietnam Aurelio Bay Institut de Physique des Hautes Energies Aurelio.bay@iphe.unil.ch

SM g b The Unitary Triangle t d b W (1-r)2+h2 Im ~ (1-r)2 + h2 r2+h2 from Dm: (1-r)2+h2 Im ~ (1-r)2 + h2 r2+h2 from BÆXu+ln B0 ~Vtd J/Y Ks B0 t ~Vub W W t B0 b g Re CP Asym ~ sin[2(b+fnew )] The Unitary Triangle

+ New FCNC + + b+fnew b+fnew (1-r)2+h2 + rnew d b ~ (1-r)2 + h2 from Dm: (1-r)2+h2 + rnew + + d b NEW FCNC ~ (1-r)2 + h2 r2+h2 = cte from BÆXu+ln + rnew Unchanged B0 t W t b+fnew NEW b+fnew

SM + New FCNC + g b+fnew The Unitary Triangle t d b W (1-r)2+h2 +rnew from Dm: (1-r)2+h2 +rnew + Im d b NEW FCNC ~ (1-r)2 + h2 r2+h2 from BÆXu+ln + rnew B0 J/Y Ks Unchanged B0 ~Vub t W W t B0 g b+fnew NEW Re CP Asym ~ sin(2(b+fnew)) The Unitary Triangle

g from Bd Æ D*-np+, D*+np-, etc. CP in BÆJ/Y Ks ~ 2(b + fnew) Bd Æ D*+ np vs Bd Æ D*+ np Bd Æ D*- np vs Bd Æ D*- np From 2(b + fnew) + g g Idem with Bs decays: compare the two g determinations (then combine them) 2 ( dg + fsnew ) from CP in Bs Æ J/y f 2 ( dg + fsnew ) - g from CP in Bs Æ Ds-K+, Ds+ K- g We want to measure g, we need to select hadronic decay channels, we want to study the Bs system, have K/p separation, access to Br < 10-7….

Rate(bb) = 105 sec-1 : 0.5% total inelastic LHCb overlook BABAR, BELLE, CLEO-III, CDF, D0, HERA-B will test CKM at the O(l3) level. LHCb is a second generation experiment for CP violation studies in the B and Bs meson systems. The goal is to obtain precise and overconstrained determination of CKM elements, including terms beyond O(l3). This will permit to detect deviations from the Standard Model description and thus to probe New Physics. Second generation means: High statistics is needed to study Bu,d,s decays with Br < 10-7 Excellent proper time resolution Excellent particle identification Efficient and flexible triggering scheme, including a selection on hadrons. High statistics can be obtained by LHCb because B production cross section at 14 TeV: LHCb running luminosity: fi sbb ≈ 500 mb 2 1032 cm-2 s-1 Rate(bb) = 105 sec-1 : 0.5% total inelastic

LHCb non-bending plane view Magnet dipole non-bending plane view LHC beams collide here Vertex Locator x z 20 m 10 m Open geometry with (quite) easy access to (almost) all components q Œ [15, 300] mrad h Œ [4.9, 1.9]

LHCb bending plane

Vertex Locator (VELO) s impact parameter [mm] Z 100 10 0.1 1 10 -20 80 cm toward spectrometer s impact parameter 100 10 [mm] 0.1 1 10 Pt [GeV] Z retract by 3 cm during beam setup 0 0.8 4 cm sz ≈ 40 mm resolution on interaction point • ≈ 200 mm Si single-side • R and f measuring planes • 220 kchannels, analogue R/O, S/N =15 Design work on front-end chip (DMILL and sub-micron technolgies) in progress prototype of R measuring 1/2 plane

RICH K–p separation > 3 s 1<p< 100 GeV/c pixel HPD Aerogel Gas CF4 Gas C4F10 Aerogel RICH K–p separation > 3 s 1<p< 100 GeV/c large aerogel rings small C4F10 CF4 rings

RICH R&D Photodetectors options: HPDs and multianode PMTs single photoelectron resolution QE = 17% @ 400 nm spatial resolution ~1 mm large area ~2.9 m2, active: ~ 70% Æ 325 kchan. binary readout B stray field up to 100 gauss radiation dose < 3kRad/year pedestal 1 p.e. 2 p.e. 3 p.e. 4 p.e. Pion beam: large rings in aerogel and small rings in C4F10 threshold DEP prototype pixel HPD

Other Systems Magnet: Warm dipole 4 Tm - 4.2 MW - 1450t TDR ok Tracker Inner: (40x60 cm2) triple GEM , Si 3 stations Outer: straw-tube drift chambers sp/p = 0.3 % [5 , 200] GeV/c s(MB->pp) =15 MeV/c2 s(MD->KKp) = 4 MeV/c2 Calorimeter (design completed) Pre-shower sandwich Pb - scintillators ECAL Shashlik type, 25 X0 HCAL Fe + scintillating tiles, 5.6l R/O by wave-length shifting fibers and PMTs MUON Resistive Plate Chambers (RPC) + Wire and Cathode Pad Chambers (WPC/CPC) for high rate regions

Joint Calorimeter Test HCAL Fe+scintillating tiles ECAL Shashlik Joint Calorimeter Test preshower 0 20 40 GeV ECAL resolution % 30 20 10 HCAL resolution % 0 50 100 150 200 GeV

LHCb Trigger Efficiency for reconstructed and correctly tagged events L0(%) L1(%) L2(%) Total(%)  e h all BdJ/(ee)KS + tag 17 63 17 72 42 81 24 BdJ/()KS + tag 87 6 16 88 50 81 36 BsDsK + tag 15 9 45 54 56 92 28 BdDK        Bd + tag 14 8 70 76 48 83 30 where the lepton trigger is important where the hadron trigger is important Tags considered (so far): muon or electron from other b-hadron b Æ lepton charged kaon from other b-hadron b Æ c Æ s Overall tag efficiency = 40% Overall mistag rate = 30%

Trigger System LHC: 40 MHz L0:1 MHz L1:40 KHz Output:200 Hz High PT muons Latency: 4 ms < 2 ms L0 decision unit L1 Trigger 3D reconstruction of secondary vertices L2+L3 Trigger Full event information High PT electrons High PT hadrons Pileup Veto B0 Æ p+ p- Running luminosity 2 x 1032 Inelastic pp interactions hadron trigger threshold ~30 % ~10%

Mass, decay time resolutions and particle ID Measurements of ms with a significance >5: up to psxs Bs-Bs oscillations with BsDs Dms = 30 ps-1  DsK Ds 5.2 5.3 5.4 5.5 GeV/c2 without RICH with RICH Bs  DsK separation from Bs  Ds Mass(DsK) sm = 11 MeV/c2 Ds DsK 5.2 5.3 5.4 5.5 5.6 GeV/c2

LHCb CP Sensitivities in 1 year Parameter Channels+c.c. No of events (1 year)  Bd 5k @P/T = 30°, |P/T|=0.200.02, =90° 2-5 Bd0  r  1k @ =50° 5 2+ Bd  D*(incl.) 260k @2+=0 12  BdJ/Ks 100k <0.6 -2 Bs DsK 2400 8(Dms=15ps-1) - 12  (45ps-1)  Bd  DK* 400 10  Bs  J/ 50k 0.6 Bs oscillations xs Bs  Ds 35k up to 75 (5s) Rare Decays Bs   11 s/b=3.5 Bd K0*  4500 s/b=16 Bd  K*  26k s/b=1 See yellow Book CERN 2000-004 !

LHCb schedule (and conclusion) 1998 Technical Proposal 1999 LHCb approved Magnet 2000 RICH, Calorimeters Outer Tracker Technical Design Reports Muon System 2001 Vertex Detector Inner Tracker 2002 L0 & L1 Trigger, DAQ Computing 2003 Magnet installation Detector and DAQ installation 2004 2005 LHCb ready for LHC « day one » and for many years of B physics at “nominal LHCb luminosity”