Sketching y = a sin bx and y = a cos bx

Slides:



Advertisements
Similar presentations
Vectors & Scalars.
Advertisements

By bithun jith maths project.
Circle Theorems Bingo!. Use any 9 of these numbers 105 o 240 o 55 o 14 o 65 o 50 o 90 o 45 o 60 o 40 o 110 o 155 o 15 o 74 o 120 o 12 o.
200 pt 300 pt 400 pt 500 pt 100 pt 200 pt 300 pt 400 pt 500 pt 100 pt 200pt 300 pt 400 pt 500 pt 100 pt 200 pt 300 pt 400 pt 500 pt 100 pt 200 pt 300 pt.
extended learning for chapter 11 (graphs)
IB Revision Lesson 2 30° 45° 60° sin θ cos θ tan θ.
Fill in missing numbers or operations
Name: Date: Read temperatures on a thermometer Independent / Some adult support / A lot of adult support
Angles in a straight line and around a point
Ozone Level ppb (parts per billion)
Objective: Know the sum of angles at a point, on a straight line and in a triangle. Vocabulary:
§ …… , :
Sketching y = a sin bx and y = a cos bx
Whiteboardmaths.com © 2004 All rights reserved
(r, ).
(r, ).
Answer these on your whiteboards:
Who Wants To Be A Millionaire?
£1 Million £500,000 £250,000 £125,000 £64,000 £32,000 £16,000 £8,000 £4,000 £2,000 £1,000 £500 £300 £200 £100 Welcome.
Presents Mathematics Department Graphs of Sine, Cosine and Tangent The combined graphs Summary Solving trigonometric equations Menu.
© 2000 Jeff B. Pelz. Fourier Synthesis Sinusoidal Functions as Building Blocks for Spatial Vision.
Changing from Sine to Cosine
NUMBER & ALGEBRA REVIEW (With your built-in calculator!) By Mr. Barnard.
TUNING SHU RANGE 4 NM ASTERNAHEAD COURSE 350T PLOTTING GUARDSPEED 5 KTS START EXIT TUTORIALS COURSE 350T.
Frequency Tables and Stem-and-Leaf Plots 1-3
Slide 6-1 COMPLEX NUMBERS AND POLAR COORDINATES 8.1 Complex Numbers 8.2 Trigonometric Form for Complex Numbers Chapter 8.
Roots of a complex number
Example: Receiving goods to warehouse Detailed view Receive Goods Inspect Goods (30) Match order? (10) Supervisor Report (5) Quality Check (45) Accept?
Chapter 7 Review.
Int 2 Graphs of the form y = a sin xo Graphs of the form y = a sin bxo
Kinematics Review.
HW 9 P (19-21, even, 56, 57, 66, even) P100 (12-22 even, 19)
THE UNIT CIRCLE Reference Angles And Trigonometry.
Trigonometric Functions and Graphs
Trigonometric Graphs Click to continue..
Trigonometry.
Trigonometric Functions of Any Angle
Preparation for NS2.4 Determine the least common multiple and the greatest common divisor of whole numbers; use them to solve problems.
Objective: Determine the correlation of a scatter plot
Lesson 11.4: Scatter Plots Standards: M7D1f & M7A3a & c
÷12=5 5x6=30 One half Half past twelve.
13-3 The Unit Circle Warm Up Lesson Presentation Lesson Quiz
Special Angles and their Trig Functions
Trig Graphs Investigate the effects of 2sin(x), 2cos(x), 2tan(x)
Finding the Greatest Common Factor
The Unit Circle PreCalculus.
Doubling and Halving. CATEGORY 1 Doubling and Halving with basic facts.
THE UNIT CIRCLE 6.1 Let’s take notes and fill out the Blank Unit Circle as we go along.
Chapter 6: Trigonometry 6
1 Euler construction Spherical C 1 C 2 C 3 formed by pts where axes intersect sphere cos w = cos u cos v + sin u sin v cos W u = U v = V w.
+90° -90° -180° -270° a(  ) lg(  ) 0’dB ()() lg(  ) 0°
13.6 – The Tangent Function. The Tangent Function Use a calculator to find the sine and cosine of each value of . Then calculate the ratio. 1. radians2.30.
Trig Graphs. y = sin x y = cos x y = tan x y = sin x + 2.
4.5 Graphs of Sine and Cosine Functions
4-4 Graphing Sine and Cosine
1 Properties of Sine and Cosine Functions The Graphs of Trigonometric Functions.
Aim: What is the transformation of trig functions? Do Now: HW: Handout Graph: y = 2 sin x and y = 2 sin x + 1, 0 ≤ x ≤ 2π on the same set of axes.
Graphs of Trig Functions
Homework: Graphs & Trig Equations 1.State the amplitude, period & then sketch the graph of (a) y = 3 cos 5x + 10 ≤ x ≤ 90 (b)y = ½ sin 2x0 ≤ x ≤ 360.
Trigonometric Functions
Aim: What’s the a in y = a sin x all about?
This is the graph of y = sin xo
Aim: How do we sketch y = A(sin Bx) and
Trigonometric Functions
Chapter 4.4 Graphs of Sine and Cosine: Sinusoids Learning Target: Learning Target: I can generate the graphs of the sine and cosine functions along with.
3) 0.96) –0.99) –3/412) –0.6 15) 2 cycles; a = 2; Period = π 18) y = 4 sin (½x) 21) y = 1.5 sin (120x) 24) 27) 30) Period = π; y = 2.5 sin(2x) 33) Period.
Graphing Trigonometric Functions
8.3 – Model Periodic Behavior
7.3 Periodic Graphs & Amplitude Objectives:
Section 4.5 Graphs of Sine and Cosine
Presentation transcript:

Sketching y = a sin bx and y = a cos bx

y = sin x y = cos x x 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360 sin x .5 .71 .87 1 –.5 –.71 –.87 –1 90 180 270 360 1 –1 0.5 –0.5 45 135 225 315 y = cos x x 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360 cos x 1 .87 .71 .5 –.5 –.71 –.87 –1 90 180 270 360 1 –1 0.5 –0.5 45 135 225 315

y = sin x y = cos x x –2 –3/2 – –/2 /2  3/2 2 5/2 3 7/2 4 /2  3/2 2 5/2 3 7/2 4 sin x y = cos x x –2 –3/2 – –/2 /2  3/2 2 5/2 3 7/2 4 cos x

y = sin x y = –sin x y = cos x y = –cos x x /2  3/2 2 sin x x /2 /2  3/2 2 sin x x /2  3/2 2 –sin x y = cos x y = –cos x x /2  3/2 2 cos x x /2  3/2 2 –cos x

Sketching y = a sin x y = 2 sin x y = ½ sin x y = –3 sin x /2  3/2 2 sin x 2 sin x x /2  3/2 2 sin x 2 sin x x /2  3/2 2 sin x 2 sin x Sketching y = a cos x y = –2 cos x y = ¾ cos x y = –4 cos x x /2  3/2 2 cos x –2 cos x x /2  3/2 2 cos x ¾ cos x x /2  3/2 2 cos x –4 cos x

To be replaced by Ryder 1

Sketching y = a sin bx and y = a cos bx: |a| = amplitude = ½(ymax – ymin) i.e., the “height” from the middle to the top |b| = frequency = number of cycles in 2 units P = period = the least number of positive units it takes to complete one cycle Plot the two functions f(x) and g(x) on the same graph on 0  x  2. For each function, identify the amplitude, frequency, period and answer the number of times they intersect. f(x) = 2 cos (3x) Amplitude: ____ Frequency: ____ Period: ____ g(x) = –2 sin (¾x) Amplitude: ____ Frequency: ____ Period: ____ 2 1 2 3 –1 –2 –3 How many times do they intersect on the interval [0, 2]? ___