Quantum control using diabatic and adibatic transitions

Slides:



Advertisements
Similar presentations
Physical Chemistry 2nd Edition
Advertisements

The Quantum Mechanics of Simple Systems
Quantum One: Lecture 5a. Normalization Conditions for Free Particle Eigenstates.
Quantum One: Lecture 4. Schrödinger's Wave Mechanics for a Free Quantum Particle.
Quantum One: Lecture 3. Implications of Schrödinger's Wave Mechanics for Conservative Systems.
Spontaneous recovery in dynamic networks Advisor: H. E. Stanley Collaborators: B. Podobnik S. Havlin S. V. Buldyrev D. Kenett Antonio Majdandzic Boston.
The Postulates of Quantum Mechanics
Boris Altshuler Columbia University Anderson Localization against Adiabatic Quantum Computation Hari Krovi, Jérémie Roland NEC Laboratories America.
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
No friction. No air resistance. Perfect Spring Two normal modes. Coupled Pendulums Weak spring Time Dependent Two State Problem Copyright – Michael D.
The spectral method: time-dependent quantum dynamics of FHF - : Potential Energy Surface, Vibrational Eigenfunctions and Infrared Spectrum. Guillermo Pérez.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Continuum Crowds Adrien Treuille, Siggraph 王上文.
Quantum control using diabatic and adibatic transitions Diego A. Wisniacki University of Buenos Aires.
Schrödinger Wave Equation 1 Reading: Course packet Ch 5.7 SCHROEDINGER WAVE EQUATION (both images from Wikipedia.com)
Schrödinger We already know how to find the momentum eigenvalues of a system. How about the energy and the evolution of a system? Schrödinger Representation:
Geometric characterization of nodal domains Y. Elon, C. Joas, S. Gnutzman and U. Smilansky Non-regular surfaces and random wave ensembles General scope.
P460 - perturbation1 Perturbation Theory Only a few QM systems that can be solved exactly: Hydrogen Atom(simplified), harmonic oscillator, infinite+finite.
Quantum control using diabatic and adibatic transitions Diego A. Wisniacki University of Buenos Aires.
Cutnell/Johnson Physics 7 th edition Classroom Response System Questions Chapter 39 More about Matter Waves Reading Quiz Questions.
Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables.
System and definitions In harmonic trap (ideal): er.
P460 - Sch. wave eqn.1 Solving Schrodinger Equation If V(x,t)=v(x) than can separate variables G is separation constant valid any x or t Gives 2 ordinary.
A study of two-dimensional quantum dot helium in a magnetic field Golam Faruk * and Orion Ciftja, Department of Electrical Engineering and Department of.
Dynamics of Polarized Quantum Turbulence in Rotating Superfluid 4 He Paul Walmsley and Andrei Golov.
One Dimensional Bosons in a Harmonic trap Sung-po Chao Rutgers University 2008/02/20 Journal club.
Particle Acceleration The observation of high-energy  -rays from space implies that particles must be accelerated to very high energies (up to ~
Quantum Two 1. 2 Evolution of Many Particle Systems 3.
Quantum interferometric visibility as a witness of general relativistic proper time Bhubaneswar, 21 st December 2011 M. Zych, F. Costa, I. Pikovski, Č.
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
The quantum kicked rotator First approach to “Quantum Chaos”: take a system that is classically chaotic and quantize it.
A. Ambrosetti, F. Pederiva and E. Lipparini
Spectral and Wavefunction Statistics (I) V.E.Kravtsov, Abdus Salam ICTP.
Charge pumping in mesoscopic systems coupled to a superconducting lead
Quench in the Quantum Ising Model
Introduction to Coherence Spectroscopy Lecture 1 Coherence: “A term that's applied to electromagnetic waves. When they "wiggle" up and down together they.
Superconductivity and Superfluidity Landau Theory of Phase Transitions Lecture 5 As a reminder of Landau theory, take the example of a ferromagnetic to.
Measurement and Expectation Values
Sub-Planck Structure and Weak Measurement
Non-Hermitian quantum mechanics and localization
Time Dependent Two State Problem
Ultrafast processes in molecules
Concept test 15.1 Suppose at time
Muhammed Sayrac Phys-689 Modern Atomic Physics Spring-2016
Atomic BEC in microtraps: Localisation and guiding
Peter Samuelsson, Sara Kheradsoud, Björn Sothmann
Quantum One.
Quantum One.
Concept test 15.1 Suppose at time
FAM Mirko Rehmann March
Hydrogen Atom Returning now to the hydrogen atom we have the radial equation left to solve The solution to the radial equation is complicated and we must.
Quantum One.
Quantum One.
Cross-section of the wire:
Quantum mechanics II Winter 2011
Mario Palma.
Spectroscopy of ultracold bosons by periodic lattice modulations
Magnetization processes in V15
Cutnell/Johnson Physics 7th edition
Quantum Mechanics Postulate 4 Describes expansion
Shrödinger Equation.
Concept test 14.1 Is the function graph d below a possible wavefunction for an electron in a 1-D infinite square well between
a = 0 Density profile Relative phase Momentum distribution
QM2 Concept test 3.1 Choose all of the following statements that are correct about bosons. (1) The spin of a boson is an integer. (2) The overall wavefunction.
Relativistic Quantum Mechanics
Consider a PIB with a sloped bottom. You want to try perturbation
Fig. 6 Avoiding unphysical points in the LZ model.
AC modeling of converters containing resonant switches
Spreading of wave packets in one dimensional disordered chains
Haris Skokos Max Planck Institute for the Physics of Complex Systems
Presentation transcript:

Quantum control using diabatic and adibatic transitions Diego A. Wisniacki University of Buenos Aires

Colaboradores-Referencias Colaborators Gustavo Murgida (UBA) Pablo Tamborenea (UBA) Short version ---> PRL 07, cond-mat/0703192 APS ICCMSE

Outline Introduction The system: quasi-one-dimensional quantum dot with 2 e inside Landau- Zener transitions in our system The method: traveling in the spectra Results Final Remarks

Introduction Desired state

Introduction Main idea of our work To travel in the spectra of eigenenergies Control parameter

Introduction To navigate the spectra

Introduction To navigate the spectra

Introduction To navigate the spectra

Introduction To navigate the spectra

The system Quasi-one-dimensional quantum dot: Confining potential: doble quantum well filled with 2 e

Colaboradores-Referencias The system The Hamiltonian of the system: Time dependent electric field Coulombian interaction Note: no spin term-we assume total spin wavefunction: singlet

The system Interaction induce chaos PRE 01 Fendrik, Sanchez,Tamborenea System: 1 well, 2 e Nearest neighbor spacing distribution

Colaboradores-Referencias The system We solve numerically the time independent Schroeringer eq. Electric field is considered as a parameter Characteristics of the spectrum (eigenfunctions and eigenvalues)

The system Spectra lines Avoided crossings

Colaboradores-Referencias The system Colaboradores-Referencias Cero slope delocalized Negative slope e¯ in the left dot Positive slope e¯ in the right dot

Landau-Zener transitions in our model LZ model hyperbolas Linear functions

Landau-Zener transitions in our model LZ model if Probability to remain in the state 1 Probability to jump to the state 2

Landau-Zener transitions in our model LZ model Adibatic transitions Diabatic transitions

Colaboradores-Referencias Landau-Zener transitions in our model Colaboradores-Referencias We study the prob. transition in several ac. For example: Full system LZ prediction 2 level system E(t)

Colaboradores-Referencias Landau-Zener transitions in our model Colaboradores-Referencias We study the prob. transition in several ac. For example: 2 level system Full system

The method: navigating the spectrum Choose the initial state and the desired final state in the spectra Find a path in the spectra Avoid adiabatic transitions in very small avoided crossings We use adiabatic and rapid transitions to travel in the spectra If it is posible try to make slow variations of the parameter

Results First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu (sudden switch method) LL

Results First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu (sudden switch method)

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Second example: complex path

Colaboradores-Referencias Results Third example: more complex path

Results

Colaboradores-Referencias Results Forth example: target state a coherent superposition

Colaboradores-Referencias Results Forth example: target state a coherent superposition

Colaboradores-Referencias Results Forth example: target state a coherent superposition

Colaboradores-Referencias Results Forth example: target state a coherent superposition

Colaboradores-Referencias Results Forth example: target state a coherent superposition

Colaboradores-Referencias Results Forth example: target state a coherent superposition

Colaboradores-Referencias Results Forth example: target state a coherent superposition

Colaboradores-Referencias Results Forth example: target state a coherent superposition

Colaboradores-Referencias The method: questions Is our method generic? We need well defined avoided crossings Stadium billiard LZ transitions Sanchez, Vergini DW PRE 96 a/R Is our method experimentally possible?

Colaboradores-Referencias Final Remarks Colaboradores-Referencias We found a method to control quantum systems Our method works well: With our method it is posible to travel in the spectra of the system We can control several aspects of the wave function (localization of the e¯, etc).

Colaboradores-Referencias Final Remarks Colaboradores-Referencias We can also obtain a combination of adiabatic states Control of chaotic systems Decoherence??? Next step???.