Intergalactic transmission and its impact on the Lyman a line

Slides:



Advertisements
Similar presentations
The Lyman-  halo of B : Evidence for infall of extended HI Joshua Adams & Gary Hill University of Texas, Austin Department of Astronomy 3D2008.
Advertisements

Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Lyman-α Galaxies at High Redshift James E. Rhoads (Space Telescope Science Institute) with Sangeeta Malhotra, Steve Dawson, Arjun Dey, Buell Jannuzi, Emily.
21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
Cosmic Baryons: The IGM Ue-Li Pen 彭威禮. Overview History of Cosmic Baryons: a gas with phase transitions Missing baryons simulations SZ-Power spectrum:
Cosmological Reionization Nick Gnedin. Co-starring Gayler Harford Katharina Kohler Peter Shaver Mike Shull Massimo Ricotti.
Suman Majumdar Department of Astronomy and Oskar Klein Centre Stockholm University Redshift Space Anisotropies in the EoR 21-cm Signal: what do they tell.
Lyman  — The Great Escape Dark Cosmology Centre | Niels Bohr Institutet | Københavns Universitet DFS Annual Meeting 2009 Supervisors:
Jesper Sommer-Larsen Dark Cosmology Centre, Niels Bohr Institute, Copenhagen Where are the "Missing" GalacticBaryons ?, The z~1 TF relation, Baryon “pinching”
Simona Gallerani Constraining cosmic reionization models with QSOs, GRBs and LAEs observational data In collaboration with: A. Ferrara, X. Fan, T. Choudhury,
Ultraviolet Pumping of the 21-cm Line in the High Redshift Universe Leonid Chuzhoy University of Texas at Austin Collaborators: Marcelo Alvarez (Stanford),
Large Scale Simulations of Reionization Garrelt Mellema Stockholm Observatory Collaborators: Ilian Iliev, Paul Shapiro, Marcelo Alvarez, Ue-Li Pen, Hugh.
Post GP-WMAP Reionization: the morning after We need quantitative measures of Epoch of reionization (Z reion ) Neutral fractions Volume fraction of ionized/neutral.
Matched Filter Search for Ionized Bubbles in 21-cm Maps Kanan K. Datta Dept. of Astronomy Stockholm University Oskar Klein Centre.
Moscow cm Cosmology Collaborators: Collaborators: Rennan Barkana, Stuart Wyithe, Matias Zaldarriaga Avi Loeb Harvard University.
Radiative Feedback Effects of the First Objects in the Early Universe Kyungjin Ahn The University of Texas at Austin East-Asia Numerical Astrophysics Meeting.
The 21cm signature of the First Stars Xuelei Chen 陳學雷 National Astronomical Observatory of China Xuelei Chen 陳學雷 National Astronomical Observatory of China.
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
1 / 31 Reionization of Universe: 3D Radiative Transfer Simulations T. Nakamoto (Univ. of Tsukuba) 1. Why Reionization ? 2. TsuCube Project 3. Toward a.
Texas Symposium, MelbourneDecember 14th 2006 Theoretical Properties of Ly  Cooling Radiation’ Mark Dijkstra (CfA) Collaborators: Z. Haiman, M.Spaans &
The Detectability of Lyα Emission from Galaxies during the Epoch of Reionization Dijkstra, Mesinger, Wyithe. JC Alex Fry.
In this toy scenario, metal enriched clouds entrained in galactic winds gives rise to absorption lines in quasar spectra, as illustrated in the above panels.
Radiation backgrounds from the first sources and the redshifted 21 cm line Jonathan Pritchard (Caltech) Collaborators: Steve Furlanetto (Yale) Marc Kamionkowski.
Mário Santos1 EoR / 21cm simulations 4 th SKADS Workshop, Lisbon, 2-3 October 2008 Epoch of Reionization / 21cm simulations Mário Santos CENTRA - IST.
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
1a.Introduction 1b.PopIII stars and galaxies --> « top down » theoretical approach 2.,3a.Ly  physics and astrophysics 3.b,4.Distant/primeval galaxies:
Lyman- Emission from The Intergalactic Medium
‘LAEs as a Probe of the High-z Universe’, Ringberg, March, 2009 Lyman Alpha Emitters (LAEs) as a Probe of the High- Redshift Universe Mark Dijkstra (CfA)
Lyman  — The Great Escape Dark Cosmology Centre | Niels Bohr Institutet | Københavns Universitet Peter Laursen – Paris, 2009.
STScI, Feb. 27, Exploring Early Structure Formation with a Very Large Space Telecope Avi Loeb Harvard University Avi Loeb Harvard University.
Mark Dijkstra, PSU, June 2010 Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies ‘ Mark Dijkstra (ITC, Harvard) based.
1 / 16 Numerical Simulations for Reionization of the Universe Nakamoto, T. (Univ. of Tsukuba) Hiroi, K. Umemura, M. 1. Why Reionization by 3-D RT ? 2.
Probing the First Star Formation by 21cm line Kazuyuki Omukai (Kyoto U.)
Observing galaxies at z = 8.8 — is it worth the effort? | Niels Bohr Institutet | Københavns Universitet Peter Laursen, with.
IAP Ly  workshop 2007, Paris Dust in Young Galaxies DARK Cosmology Centre | Niels Bohr Institutet | Københavns Universitet.
Radiative Transfer Simulations The Proximity Effect of LBGs: Antonella Maselli, OAArcetri, Firenze, Italy Collaborators: A.Ferrara, M. Bruscoli, S. Marri.
The Dark Age and Cosmology Xuelei Chen ( 陈学雷 ) National Astronomical Observarories of China The 2nd Sino-French Workshop on the Dark Universe, Aug 31st.
March 26, Large Scale Simulations: properties of the 21cm signal Garrelt Mellema Stockholm Observatory Collaborators: Martina.
Constraint on Cosmic Reionization from High-z QSO Spectra Hiroi Kumiko Umemura Masayuki Nakamoto Taishi (University of Tsukuba) Mini Workshop.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
FUSE and HST Observations of Helium II Absorption in the IGM: Implications for Seeing HI Re-ionization Gerard Kriss STScI.
Cosmological Structure with the Lyman Alpha Forest. Jordi Miralda Escudé ICREA, Institut de Ciències del Cosmos University of Barcelona, Catalonia Edinburgh,
Scattered Radiation and Unified Model of Active Galactic Nuclei
High Redshift QUASAR Spectra as Probe of Reionization of IGM.
Ilian T. Iliev Canadian Institute for Theoretical Astrophysics/University of Zurich with Garrelt Mellema (Stockholm), Jane Arthur, Will Henney (UNAM, Morelia),
A connection between the 2175 Å dust feature and CI?
Proximity Effect Around High-redshift Galaxies
Outline of the lectures
Lecture 6 Summary and Perspectives
First Stars and GRBs, and their Cosmological Impacts
Intrinsic Absorption of Mrk 279
Cosmology With The Lyα Forest
Martin Haehnelt, Matteo Viel, Volker Springel
X-Rays -> see you at COSPAR in July; also Kawai’s talk this conf.
– or – Modeling Lya spectra Peter Laursen,
On the implications for the Lya line of an inhomogeneous, dusty medium
Observing galaxies at z = 8.8
Dust. LyGalaxies Nyborg, 2008
Probing Reionization with Lyman Alpha Emitters Pratika Dayal
Lyman α – impact of the intergalactic medium
Complex Lya Profiles in z=6.6 Ultraluminous Lya Emitters
– or: debunking the Neufeld scenario
Ly Scattering in Young Galaxies
Galactic Astronomy 銀河物理学特論 I Lecture 3-4: Chemical evolution of galaxies Seminar: Erb et al. 2006, ApJ, 644, 813 Lecture: 2012/01/23.
Modeling Lyα emission from high-z galaxies
Dust in Young Galaxies Peter Laursen Supervisor: Anja C. Andersen
Lecture 4: Light extinction: Compton scattering Gamma-Ray Bursts.
Presentation transcript:

Intergalactic transmission and its impact on the Lyman a line Peter Laursen Potsdam, 2011 www.dark-cosmology.dk/~pela Oskar Klein Centre | Inst. för Astronomi | Stockholms Universitet

Lyman a modeling Theoretically Numerically Osterbrock (1962) Adams (1972) Harrington (1973) Neufeld (1990, 1991) Loeb & Rybicky (1999) Dijkstra+ (2006) Numerically Auer (1965) Avery & House (1968) Loeb & Rybicky (1999) Ahn et al. (2001, 2002) Zheng & Miralda-Escudé (2002) Cantalupo+ (2005) Dijkstra+ (2006) Hansen & Oh (2006) Tasitsiomi (2006) Verhamme+ (2006) Laursen+ (2007, 2009) Barnes+ (2010, 2011) Zheng+ (2010, 2011)

Standard approach • Ignore • Remove blue half • Reduce full line by some factor e–<t> • Remove blue half

Numerical approach Cosmological N-body+hydro simulation (SPH, Sommer-Larsen et al. 2003, 2006) + ionizing UV RT (Razoumov & Sommer-Larsen 2006, 2007) + hi-res resimulations of interesting regions + galactic Monte Carlo Ly RT with dust + IGM RT

Galactic RT – MOCALATA* Each cell: nHI, nHII, T, vbulk, LLya, Zi ⇒nd * PL et al. 2009, ApJ, 696, 853 and 2009, ApJ, 704, 1640

Galactic RT – MOCALATA* No scattering With scattering Including dust * PL et al. 2009, ApJ, 696, 853 and 2009, ApJ, 704, 1640

Galactic RT – MOCALATA* * PL et al. 2009, ApJ, 696, 853 and 2009, ApJ, 704, 1640

Intergalactic RT – IGMTRANSFER* * PL et al. 2011, ApJ, 728, 52; the code can be downloaded from www.dark-cosmology.dk/~pela/IGMtransfer.html

Intergalactic RT – IGMTRANSFER* * PL et al. 2011, ApJ, 728, 52; the code can be downloaded from www.dark-cosmology.dk/~pela/IGMtransfer.html

Intergalactic RT – IGMTRANSFER* * PL et al. 2011, ApJ, 728, 52; the code can be downloaded from www.dark-cosmology.dk/~pela/IGMtransfer.html

Intergalactic RT – IGMTRANSFER* z = 3.5 * PL et al. 2011, ApJ, 728, 52; the code can be downloaded from www.dark-cosmology.dk/~pela/IGMtransfer.html

Intergalactic RT – IGMTRANSFER* z = 5.8 * PL et al. 2011, ApJ, 728, 52; the code can be downloaded from www.dark-cosmology.dk/~pela/IGMtransfer.html

Intergalactic RT – IGMTRANSFER* z = 6.5 * PL et al. 2011, ApJ, 728, 52; the code can be downloaded from www.dark-cosmology.dk/~pela/IGMtransfer.html

Transmission function

The origin of the dip Velocity field Density field

Impact on the Lya profile z = 3.5 Spectrum escaping galaxy Transmission function Observed spectrum

Impact on the Lya profile z = 3.5

Impact on the Lya profile z = 5.8

Impact on the Lya profile z = 6.5

Transmitted fraction z = 3.5

Transmitted fraction z = 5.8

Transmitted fraction z = 6.5

Alternative to outflow model? z = 3 – 4 ? However, as Roberto Maiolino mentioned yesterday, … Verhamme et al. 2008, A&A, 491, 89

Probing the very first galaxies z = 8.8 Ultra-VISTA PIs Jim Dunlop, Marijn Franx, Johan Fynbo, & Olivier LeFèvre

Probing the very first galaxies z = 8.8 Compare with Dijkstra & Wyithe 2010, MNRAS, 408, 352: ~5%

Probing the Epoch of Reionization Songaila 2004, ApJ, 127, 2598 43

Probing the Epoch of Reionization 44

Summary IGM absorption may explain at least some of the asymmetric Ly profiles • Transmitted fractions are 0.77+17 at z = 3.5 • –34 –18 0.26+13 at z = 5.8 0.20+12 at z = 6.5 –?? 0.05+?? at z = 8.8 Reionization may have initiated earlier than probed by WMAP •

Extra stuff

Extra stuff

Extra stuff With Hannes Jensen (OKC), Garrelt Mellema (OKC), Ilian Iliev (U. of Sussex), & Paul Shapiro (U. of Texas)

Extra stuff

Extra stuff