by Anil Dangi, Lei Zhang, Xiaomin Zhang, and Xunrong Luo

Slides:



Advertisements
Similar presentations
Impairment in Natural Killer Cells Editing of Immature Dendritic Cells by Infection with a Virulent Trypanosoma cruzi Population J Innate.
Advertisements

Joseph H. Chewning, Weiwei Zhang, David A. Randolph, C
Myeloid Suppressor Cells Accumulate and Regulate Blood Pressure in HypertensionNovelty and Significance by Kandarp H. Shah, Peng Shi, Jorge F. Giani, Tea.
Host-Derived CD8+ Dendritic Cells Protect Against Acute Graft-versus-Host Disease after Experimental Allogeneic Bone Marrow Transplantation  Michael Weber,
William H. D. Hallett, Weiqing Jing, William R. Drobyski, Bryon D
by JoAnn Castelli, Elaine K
Stromal-Derived Factor-1α and Interleukin-7 Treatment Improves Homeostatic Proliferation of Naïve CD4+ T Cells after Allogeneic Stem Cell Transplantation 
Host-Derived Interleukin-18 Differentially Impacts Regulatory and Conventional T Cell Expansion During Acute Graft-Versus-Host Disease  Robert Zeiser,
by Rui Zhang, Jeffrey D. Lifson, and Claire Chougnet
Juyang Kim, Wongyoung Kim, Hyun J. Kim, Sohye Park, Hyun-A
Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer by Ou Cao, Eric Dobrzynski,
Induction of Immunity to Neuroblastoma Early after Syngeneic Hematopoietic Stem Cell Transplantation Using a Novel Mouse Tumor Vaccine  Weiqing Jing,
by Yoshinobu Maeda, Pavan Reddy, Kathleen P
by Dennis Adeegbe, Robert B. Levy, and Thomas R. Malek
Local Inflammatory Cues Regulate Differentiation and Persistence of CD8+ Tissue- Resident Memory T Cells  Tessa Bergsbaken, Michael J. Bevan, Pamela J.
Human NK cell development in NOD/SCID mice receiving grafts of cord blood CD34+ cells by Christian P. Kalberer, Uwe Siegler, and Aleksandra Wodnar-Filipowicz.
Volume 6, Issue 5, Pages (November 2009)
by Silke Huber, Reinhard Hoffmann, Femke Muskens, and David Voehringer
William H. D. Hallett, Weiqing Jing, William R. Drobyski, Bryon D
Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E)‏ by Grzegorz Terszowski, Claudia Waskow, Peter.
Role of GM-CSF in tolerance induction by mobilized hematopoietic progenitors by Hassen Kared, Bertrand Leforban, Ruddy Montandon, Amédée Renand, Esther.
by Norman Nausch, Ioanna E
by Daniel L. Barber, Katrin D. Mayer-Barber, Lis R. V
Ikaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease by Tomomi Toubai, Yaping Sun, Isao Tawara, Ann Friedman,
Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells by Wuding Zhou, Hetal Patel, Ke Li, Qi Peng, Marie-Bernadette.
LBH589 Enhances T Cell Activation In Vivo and Accelerates Graft-versus-Host Disease in Mice  Dapeng Wang, Cristina Iclozan, Chen Liu, Changqing Xia, Claudio.
Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kδ inhibitors and VIP antagonists by Christopher T.
Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients by Devi.
Hans-Peter Raué, Carol Beadling, Jennifer Haun, Mark K. Slifka 
by Éric Aubin, Réal Lemieux, and Renée Bazin
The histone methyltransferase Ezh2 is a crucial epigenetic regulator of allogeneic T-cell responses mediating graft-versus-host disease by Shan He, Fang.
by Sheng F. Cai, Xuefang Cao, Anjum Hassan, Todd A
PreImplantation Factor Reduces Graft-versus-Host Disease by Regulating Immune Response and Lowering Oxidative Stress (Murine Model)  Yehudith Azar, Reut.
Effects and Regulation of Autoreactive CD8+ T Cells in a Transgenic Mouse Model of Autoimmune Hepatitis  Mario Zierden, Elisabeth Kühnen, Margarete Odenthal,
TLR5 signaling in murine bone marrow induces hematopoietic progenitor cell proliferation and aids survival from radiation by Benyue Zhang, Damilola Oyewole-Said,
IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis
IL-17 Gene Ablation Does Not Impact Treg-Mediated Suppression of Graft-Versus-Host Disease after Bone Marrow Transplantation  Lucrezia Colonna, Mareike.
Pak2 regulates myeloid-derived suppressor cell development in mice
Pharmacologic Expansion of Donor-Derived, Naturally Occurring CD4+Foxp3+ Regulatory T Cells Reduces Acute Graft-versus-Host Disease Lethality Without.
Absence of donor Th17 leads to augmented Th1 differentiation and exacerbated acute graft-versus-host disease by Tangsheng Yi, Dongchang Zhao, Chia-Lei.
Inhibition of Cathepsin S Reduces Allogeneic T Cell Priming but Not Graft-versus-Host Disease Against Minor Histocompatibility Antigens  Hisaki Fujii,
TIGIT expression in naive T cells is accelerated by coculture with si-tolerant T cells at an early-stimulation stage. TIGIT expression in naive T cells.
Volume 21, Issue 1, Pages (July 2004)
by Hairui Su, Chiao-Wang Sun, Szu-Mam Liu, Xin He, Hao Hu, Kevin M
Enrichment of IL-12–Producing Plasmacytoid Dendritic Cells in Donor Bone Marrow Grafts Enhances Graft-versus-Leukemia Activity in Allogeneic Hematopoietic.
Cytotoxic CD8+ T Cells Stimulate Hematopoietic Progenitors by Promoting Cytokine Release from Bone Marrow Mesenchymal Stromal Cells  Christian M. Schürch,
Blocking Activator Protein 1 Activity in Donor Cells Reduces Severity of Acute Graft- Versus-Host Disease through Reciprocal Regulation of IL-17–Producing.
Volume 29, Issue 2, Pages (August 2008)
Essential Role of Interleukin-12/23p40 in the Development of Graft-versus-Host Disease in Mice  Yongxia Wu, David Bastian, Steven Schutt, Hung Nguyen,
Volume 18, Issue 3, Pages (March 2003)
Murine Bone Marrow Stromal Progenitor Cells Elicit an In Vivo Cellular and Humoral Alloimmune Response  Andrea T. Badillo, Kirstin J. Beggs, Elisabeth.
Host Basophils Are Dispensable for Induction of Donor T Helper 2 Cell Differentiation and Severity of Experimental Graft-versus-Host Disease  Isao Tawara,
Volume 19, Issue 2, Pages (February 2016)
SHIP is required for a functional hematopoietic stem cell niche
Tracking ex vivo-expanded CD4+CD25+ and CD8+CD25+ regulatory T cells after infusion to prevent donor lymphocyte infusion-induced lethal acute graft-versus-host.
Volume 6, Issue 5, Pages (November 2009)
In Situ Activation and Expansion of Host Tregs: A New Approach to Enhance Donor Chimerism and Stable Engraftment in Major Histocompatibility Complex-Matched.
Volume 8, Issue 5, Pages (May 2017)
Volume 22, Issue 2, Pages (February 2005)
CD25 expression distinguishes functionally distinct alloreactive CD4+ CD134+ (OX40+) T-cell subsets in acute graft-versus-host disease  Philip R Streeter,
Volume 38, Issue 3, Pages (March 2013)
Donor antigen-presenting cells regulate T-cell expansion and antitumor activity after allogeneic bone marrow transplantation  Jian-Ming Li, Edmund K.
Volume 17, Issue 2, Pages (February 2009)
In Vivo Expansion of Regulatory T cells With IL-2/IL-2 mAb Complexes Prevents Anti- factor VIII Immune Responses in Hemophilia A Mice Treated With Factor.
Volume 28, Issue 5, Pages (May 2008)
Volume 38, Issue 2, Pages (February 2013)
Conventional dendritic cells are the critical donor APC presenting alloantigen after experimental bone marrow transplantation by Kate A. Markey, Tatjana.
Volume 13, Issue 11, Pages (December 2015)
Rapamycin inhibits IL-4—induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo by Holger Hackstein, Timucin Taner,
Volume 37, Issue 2, Pages (August 2012)
Presentation transcript:

by Anil Dangi, Lei Zhang, Xiaomin Zhang, and Xunrong Luo Murine CMV induces type 1 IFN that impairs differentiation of MDSCs critical for transplantation tolerance by Anil Dangi, Lei Zhang, Xiaomin Zhang, and Xunrong Luo BloodAdv Volume 2(6):669-680 March 27, 2018 © 2018 by The American Society of Hematology

Anil Dangi et al. Blood Adv 2018;2:669-680 © 2018 by The American Society of Hematology

Acute MCMV (Δm157) infection abrogates tolerance induction by donor ECDI-SPs. Acute MCMV (Δm157) infection abrogates tolerance induction by donor ECDI-SPs. (A) Schematic treatment plan of tolerance induction in B6 transplant recipients. Donor (Balb/c) ECDI-SPs (1×108) were infused IV on day −7 and +1. Approximately 200 Balb/c islets were implanted in the kidney capsule of diabetic B6 recipients on day 0. (B) Percent graft survival of islet allografts in uninfected or Δm157-infected recipients, with the infection given on day 0. Data shown in panel B were from at least 5 independent experiments with a total of 10 to 18 mice in each group. (C) Percent graft survival of islet allografts in uninfected or Δm157-infected recipients, with the infection given on day 7. Data shown in panel C were from 2 independent experiments with a total of 5 to 6 mice in each group. (D) Detection of MCMV DNA in the spleen and islet isograft following Δm157 infection. MCMV MEIP gene was quantified by quantitative polymerase chain reaction. Data were normalized to values from tissues of uninfected hosts and presented as mean ± SD (N = 4). (E) Sygeneic transplantation. Percent graft survival of islet isografts in uninfected or Δm157-infected recipients, with the infection given on day 0. *P < .05 (log-rank test). Data presented in panels D and E were compiled from 2 independent experiments with a total of 4 mice in each group. Anil Dangi et al. Blood Adv 2018;2:669-680 © 2018 by The American Society of Hematology

Acute MCMV infection induces type 1 IFN that impairs tolerance induction by donor ECDI-SPs. Acute MCMV infection induces type 1 IFN that impairs tolerance induction by donor ECDI-SPs. (A) Kinetics of serum IFN-α level post–MCMV infection (N = 4-6, compiled from 4 independent experiments). (B) Schematic treatment plan and percent graft survival with anti-IFNAR1-Ab blockade. Two cohorts of ECDI-SP–treated transplant recipients were infected with Δm157 on the day of transplantation. The first cohort additionally received anti-IFNAR1 blocking antibody (IP injection; 250 µg/mouse per day) on the indicated days, while the other cohort additionally received isotype antibody on the same indicated days (N = 5-7, compiled from 3 independent experiments). (C) Schematic treatment plan and percent graft survival with recombinant IFN-α treatment. Two cohorts of ECDI-SP–treated transplant recipients were additionally treated with vehicle (PBS) or mouse recombinant IFN-α (400 U/g per day) on the indicated days (N = 6, compiled from 2 independent experiments). *P < .05 (log-rank test). Anil Dangi et al. Blood Adv 2018;2:669-680 © 2018 by The American Society of Hematology

MDSCs are critical for tolerance induction to allogeneic islets by donor ECDI-SPs. MDSCs are critical for tolerance induction to allogeneic islets by donor ECDI-SPs. (A) Representative FACS plots depicting depletion of both populations of MDSCs (Gr1HI-granulocytic MDSCs and Ly6CHI-monocytic MDSCs) in the blood by the anti-Gr1 antibody. Upper panel: mice treated with isotype control antibody. Lower panel: mice treated with anti-Gr1 antibody. Dot plots were both gated on live CD11b+ cells. Dot plots shown were representative of a total of 4 mice in each group from 2 experiments. (B) Schematic treatment plan and percent graft survival with anti-Gr1 antibody treatment. ECDI-SP–treated transplant recipients further received either anti-Gr1 antibody or isotype control antibody (first dose: 200 µg/mouse; subsequent doses: 100 µg/mouse; IP) on the indicated days (N = 8, data were compiled from 3 independent experiments). *P < .05 (log-rank test). Anil Dangi et al. Blood Adv 2018;2:669-680 © 2018 by The American Society of Hematology

Acute MCMV infection impairs generation of Gr1HI-MDSCs. Acute MCMV infection impairs generation of Gr1HI-MDSCs. (A) Kinetics of circulating CD11b+Gr1HI MDSCs in ECDI-SP–treated, either uninfected or Δm157-infected (on day 0), transplant recipients. Total live CD11b+Gr1HI cells were enumerated by FACS in 50 µL of blood drawn on the indicated days. (B) Quantitative analysis of total CD11b+Gr1HI cells in 50 µL of blood collected on day 10 posttransplantation from recipients of the indicated groups. Data shown in panels A and B were from 2 to 3 independent experiments with a total of 4 to 6 mice in each group. *P < .05. (C) Representative histograms of expression of C5aR and FcγRII/III on circulating Gr1HI-MDSCs on day 10 posttransplantation from naïve or transplant recipients with or without day 0 Δm157 infection. (D) Mean fluorescence intensities (MFI) of C5aR and FcγRII/III of groups shown in panel C. Data presented in panels C and D were obtained from 2 independent experiments with a total of 4 mice in each group. (E) In vitro suppression assay using Gr1HI-MDSCs sorted from the spleen of the indicated groups 10 days posttransplantation. Sorted Gr1HI-MDSCs were cocultured with CFSE-labeled syngeneic CD8 T cells stimulated with anti-CD3/CD28 coated beads (at a ratio of 1:1:1). Proliferation of CD8 T cells was measured by CFSE dilution by FACS. (F) Quantification of CD8 T-cell proliferation in the presence of Gr1HI-MDSCs sorted from the indicated groups shown in panel E. Data shown in panels E and F were obtained from 2 independent experiments with a total of 4 mice in each group. Data were presented as mean ± SD. *P < .05. (G) Representative FACS plot depicting the purity of sorted Gr1HI cells pooled from the BM and the spleen of naïve B6 mice used for adoptive transfers. (H) Schematic treatment plan and percent graft survival with adoptive transfer of sorted Gr1HI cells. Two cohorts of ECDI-SP–treated transplant recipients were infected with Δm157 on day 0. The first cohort additionally received ∼30 × 106 sorted Gr1HI cells on the indicated days, while the other cohort did not receive any cells (N = 3-4, compiled from 2 independent experiments). *P < .05 (log-rank test). Anil Dangi et al. Blood Adv 2018;2:669-680 © 2018 by The American Society of Hematology

Acute MCMV infection promotes differentiation of inflammatory Ly6CHI monocytes. Acute MCMV infection promotes differentiation of inflammatory Ly6CHImonocytes. (A) Kinetics of circulating CD11b+Ly6CHI cells in ECDI-SP–treated, either uninfected or Δm157-infected (on day 0), transplant recipients. Total live CD11b+Ly6CHI cells were enumerated by FACS in 50 µL of blood drawn on the indicated days. (B) Quantitative analysis of total CD11b+Ly6CHI cells in 50 µL of blood collected on day 10 posttransplantation from recipients of the indicated groups. (C) Representative FACS plots demonstrating the expression pattern of CD115 and CD11c on circulating Ly6CHI cells from the indicated groups on day 10 posttransplantation. Data shown in panels A-C were from 2 to 3 independent experiments with a total of 4 to 6 mice in each group. *P < .05. (D) Representative FACS plot demonstrating graft-infiltrating Ly6CHI cells (gated on total graft-infiltrating live CD11b+ cells; day 10 posttransplant). Scatter graph showing quantitative analysis of the number of graft-infiltrating Ly6CHI cells (N = 6 in each group). (E) Representative FACS plots demonstrating phenotypic expression of CD115 and CD11c on graft-infiltrating Ly6CHI cells shown in panel D. (F) Representative FACS plots demonstrating expression of intracellular IL-12p40, surface CD86, and MHC II from graft-infiltrating Ly6CHI cells shown in panel D. Scatter graphs showing quantitative analysis of MFIs of the indicated markers. Data shown in panels D-F were obtained from 3 independent experiments with a total of 4 to 6 mice in each group. Data were presented as mean ± SD. *P < .05. Anil Dangi et al. Blood Adv 2018;2:669-680 © 2018 by The American Society of Hematology

Functional assessment of Ly6CHI cells and intragraft CD8 T cells and CD4+Foxp3+ Tregs. Functional assessment of Ly6CHIcells and intragraft CD8 T cells and CD4+Foxp3+Tregs. (A) In vitro suppression assay using sorted splenic Ly6CHI cells from the indicated groups 10 days posttransplantation. Control: no Ly6CHI cells were added. Sorted splenic Ly6CHI cells were cocultured with CFSE-labeled syngeneic CD8 T cells stimulated with anti-CD3/CD28 coated beads (at a ratio of 1:1:1). Proliferation of CD8 T cells was quantified by CFSE dilution. Data shown were averaged from a total of 4 mice in each group from 2 independent experiments. (B) Alloantigen cross-presentation by Ly6CHI cells to CD8 T cells. Sorted splenic Ly6CHI cells from the indicated groups were cocultured with CFSE-labeled naïve B6 CD8 T cells at a ratio of 5:1 (Ly6CHI:CD8) in the presence of BALB/c splenocyte lysates (50 µg/mL). CD8 T-cell proliferation was measured by CFSE dilution on day 4 of cocultures. Data shown in panels A and B were averaged from a total of 4 mice in each group from 2 independent experiments and presented as mean ± SD. *P < .05. (C) Quantitative analysis of graft-infiltrating CD3+CD8+ T cells (day 10 posttransplant) from the indicated groups. (D) Representative FACS plots demonstrating graft-infiltrating CD4+Foxp3+ Tregs (day 10 posttransplant; gated on CD3+ cells) from the indicated groups. Scatter graph showing quantitation of Treg numbers. Data shown in panels C and D were from 2 to 3 independent experiments with a total of 4 to 6 grafts in each group. Data were presented as mean ± SD. *P < .05. Anil Dangi et al. Blood Adv 2018;2:669-680 © 2018 by The American Society of Hematology

IFN-α regulates the differentiation of CD11b+Gr1HI and CD11b+Ly6CHI cells from lineage negative (Lin−) BM progenitor cells. IFN-α regulates the differentiation of CD11b+Gr1HIand CD11b+Ly6CHIcells from lineage negative (Lin−) BM progenitor cells. (A) Representative FACS plots showing preculture Lin−CD11b− cells and their differentiation to CD11b+Gr1HI or CD11b+Ly6CHI cells following a 2-day culture in the presence of vehicle (PBS) or IFN-α (100 U/mL). (B) Bar graphs showing quantitation of Ly6CHI cells (B) or Gr1HI cells (C) following 2 days of culture. (D) Representative histogram showing CD11c expression by Ly6CHI cells differentiated from Lin− cells in the presence or absence of IFN-α. (E) Representative FACS plots showing the gating of the remaining CD11b−Lin− cells following the 2-day culture to be examined for intracellular IRF8 expression and representative histogram showing IRF8 expression by CD11b−Lin− cells in the presence or absence of IFN-α. Bar graph showing the MFIs of IRF8 normalized over isotype control. Data shown in panels A-E were obtained from 2 independent culture experiments performed in triplicates and presented as mean ± SD of 6 replicates. *P < .05. (F) Representative histograms depicting the expression of IRF8 in BM hematopoietic stem cells (HSCs: Lin−c-Kit+Sca-1+) and GMPs (Lin−c-Kit+Sca-1−FcγRII/III+) from naïve mice (solid purple line), uninfected ECDI-SP–treated mice (solid green line), or Δm157-infected ECDI-SP–treated mice (dashed blue line) 2 days post–Δm157 infection. Data shown in panel F were obtained from 2 independent experiments with a total of 4 mice in each group. Anil Dangi et al. Blood Adv 2018;2:669-680 © 2018 by The American Society of Hematology