Time independent Hoo = Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t m o Harry Kroto 2004
Time independent Hoo = Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t) e m o Harry Kroto 2004
Time independent Hoo = Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t) e Ee (t) = Eeocos 2t m o Harry Kroto 2004
Time independent Hoo = Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t) e Ee (t) = Eeocos 2t Ee(t) Radiation field m o Harry Kroto 2004
e Electric dipole moment Time independent Hoo = Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t) e Ee (t) = Eeocos 2t Ee(t) Radiation field e Electric dipole moment m o Harry Kroto 2004
e Electric dipole moment = mam(t) m Time independent Hoo = Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t) e Ee (t) = Eeocos 2t Ee(t) Radiation field e Electric dipole moment = mam(t) m m o Harry Kroto 2004
e Electric dipole moment = mam(t) m Time independent Hoo = Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t) e Ee (t) = Eeocos 2t Ee(t) Radiation field e Electric dipole moment = mam(t) m m o Harry Kroto 2004
e Electric dipole moment = mam(t) m Time independent Hoo = Eoo Stationary States mo m Time dependent [Ho + V(t)] = iħ/t V(t) = -Ee(t) e Ee (t) = Eeocos 2t Ee(t) Radiation field e Electric dipole moment = mam(t) m am(t) indicates how the population of state m varies in time m o Harry Kroto 2004