Qingxia Liu qxliu.nju@gmail.com Interactive Hierarchical Tag Clouds for Summarizing Spatiotemporal Social Contents [ICDE 2014] Kang, Wei, Anthony KH Tung,

Slides:



Advertisements
Similar presentations
A probabilistic model for retrospective news event detection
Advertisements

A Vector Space Model for Automatic Indexing
Entity-Centric Topic-Oriented Opinion Summarization in Twitter Date : 2013/09/03 Author : Xinfan Meng, Furu Wei, Xiaohua, Liu, Ming Zhou, Sujian Li and.
Pete Bohman Adam Kunk.  Introduction  Related Work  System Overview  Indexing Scheme  Ranking  Evaluation  Conclusion.
Not just numbers on shelves: using the DDC for information retrieval Gordon Dunsire Presented at the Symposium “Bridging the class(ification) divide: the.
Comparing Twitter Summarization Algorithms for Multiple Post Summaries David Inouye and Jugal K. Kalita SocialCom May 10 Hyewon Lim.
Bring Order to Your Photos: Event-Driven Classification of Flickr Images Based on Social Knowledge Date: 2011/11/21 Source: Claudiu S. Firan (CIKM’10)
Presented by Zeehasham Rasheed
Ranking by Odds Ratio A Probability Model Approach let be a Boolean random variable: document d is relevant to query q otherwise Consider document d as.
Panpan Xu 1, Yingcai Wu 2, Enxun Wei 2, Tai-Quan Peng 3, Shixia Liu 2, Jonathan J.H. Zhu 4, Huamin Qu 1 … … … Visual Analysis of Topic Competition 1 Hong.
Knowledge Science & Engineering Institute, Beijing Normal University, Analyzing Transcripts of Online Asynchronous.
Large-Scale Content-Based Image Retrieval Project Presentation CMPT 880: Large Scale Multimedia Systems and Cloud Computing Under supervision of Dr. Mohamed.
CHAMELEON : A Hierarchical Clustering Algorithm Using Dynamic Modeling
Temporal Event Map Construction For Event Search Qing Li Department of Computer Science City University of Hong Kong.
Keyphrase Extraction in Scientific Documents Thuy Dung Nguyen and Min-Yen Kan School of Computing National University of Singapore Slides available at.
Personalization in Local Search Personalization of Content Ranking in the Context of Local Search Philip O’Brien, Xiao Luo, Tony Abou-Assaleh, Weizheng.
1 Wikification CSE 6339 (Section 002) Abhijit Tendulkar.
UOS 1 Ontology Based Personalized Search Zhang Tao The University of Seoul.
Event Detection using Customer Care Calls 04/17/2013 IEEE INFOCOM 2013 Yi-Chao Chen 1, Gene Moo Lee 1, Nick Duffield 2, Lili Qiu 1, Jia Wang 2 The University.
-1- Philipp Heim, Thomas Ertl, Jürgen Ziegler Facet Graphs: Complex Semantic Querying Made Easy Philipp Heim 1, Thomas Ertl 1 and Jürgen Ziegler 2 1 Visualization.
Web Document Clustering: A Feasibility Demonstration Oren Zamir and Oren Etzioni, SIGIR, 1998.
1 Information Retrieval Acknowledgements: Dr Mounia Lalmas (QMW) Dr Joemon Jose (Glasgow)
Document Clustering 文件分類 林頌堅 世新大學圖書資訊學系 Sung-Chien Lin Department of Library and Information Studies Shih-Hsin University.
Developing Trust Networks based on User Tagging Information for Recommendation Making Touhid Bhuiyan et al. WISE May 2012 SNU IDB Lab. Hyunwoo Kim.
Wei Feng , Jiawei Han, Jianyong Wang , Charu Aggarwal , Jianbin Huang
You Are What You Tag Yi-Ching Huang and Chia-Chuan Hung and Jane Yung-jen Hsu Department of Computer Science and Information Engineering Graduate Institute.
Feature Detection in Ajax-enabled Web Applications Natalia Negara Nikolaos Tsantalis Eleni Stroulia 1 17th European Conference on Software Maintenance.
Contextual Ranking of Keywords Using Click Data Utku Irmak, Vadim von Brzeski, Reiner Kraft Yahoo! Inc ICDE 09’ Datamining session Summarized.
Q2Semantic: A Lightweight Keyword Interface to Semantic Search Haofen Wang 1, Kang Zhang 1, Qiaoling Liu 1, Thanh Tran 2, and Yong Yu 1 1 Apex Lab, Shanghai.
Enhancing Cluster Labeling Using Wikipedia David Carmel, Haggai Roitman, Naama Zwerdling IBM Research Lab (SIGIR’09) Date: 11/09/2009 Speaker: Cho, Chin.
Facilitating Document Annotation using Content and Querying Value.
Use of FCA in the Ontology Extraction Step for the Improvement of the Semantic Information Retrieval Peter Butka TU Košice, Slovakia.
From Text to Image: Generating Visual Query for Image Retrieval Wen-Cheng Lin, Yih-Chen Chang and Hsin-Hsi Chen Department of Computer Science and Information.
1 Masters Thesis Presentation By Debotosh Dey AUTOMATIC CONSTRUCTION OF HASHTAGS HIERARCHIES UNIVERSITAT ROVIRA I VIRGILI Tarragona, June 2015 Supervised.
Digital Libraries1 David Rashty. Digital Libraries2 “A library is an arsenal of liberty” Anonymous.
Advantages of Query Biased Summaries in Information Retrieval by A. Tombros and M. Sanderson Presenters: Omer Erdil Albayrak Bilge Koroglu.
Linked Data Profiling Andrejs Abele National University of Ireland, Galway Supervisor: Paul Buitelaar.
Service discovery with semantic alignment Alberto Fernández AT COST WG1 meeting, Cyprus, Dec, 2009.
26/01/20161Gianluca Demartini Ranking Categories for Faceted Search Gianluca Demartini L3S Research Seminars Hannover, 09 June 2006.
Divided Pretreatment to Targets and Intentions for Query Recommendation Reporter: Yangyang Kang /23.
Event-Based Extractive Summarization E. Filatova and V. Hatzivassiloglou Department of Computer Science Columbia University (ACL 2004)
Instance Discovery and Schema Matching With Applications to Biological Deep Web Data Integration Tantan Liu, Fan Wang, Gagan Agrawal {liut, wangfa,
GoRelations: an Intuitive Query System for DBPedia Lushan Han and Tim Finin 15 November 2011
Discovery and Metadata March 9, 2004 John Weatherley
Bump hunting In The Dark: Local Discrepancy Maximization on Graphs
Course : WEB ENGINEERING
Designing Cross-Language Information Retrieval System using various Techniques of Query Expansion and Indexing for Improved Performance  Hello everyone,
Saisai Gong, Wei Hu, Yuzhong Qu
Personalized Social Image Recommendation
Weichuan Dong Qingsong Liu Zhengyong Ren Huanyang Zhao
إستراتيجيات ونماذج التقويم
Enhancing ICPSR metadata with DDI-Lifecycle
Type-directed Topic Segmentation of Entity Descriptions
An Interactive Approach to Collectively Resolving URI Coreference
Citation-based Extraction of Core Contents from Biomedical Articles
Block Matching for Ontologies
Magnet & /facet Zheng Liang
Introduction to Information Retrieval
Text Mining & Natural Language Processing
Danyun Xu, Gong Cheng*, Yuzhong Qu
Qingxia Liu A Generative Interpretation of RDF Dataset  and its Application in Summarization Qingxia Liu 2019/4/6.
Entity Description Pattern Extraction and Their Usage in Entity Query
Leverage Consensus Partition for Domain-Specific Entity Coreference
CS 485G: Special Topics in Data Mining
Facilitating Navigation on Linked Data through Top-K Link Patterns
An Approach to Abstractive Multi-Entity Summarization
Tantan Liu, Fan Wang, Gagan Agrawal The Ohio State University
Presented By: Grant Glass
Using Link Information to Enhance Web Page Classification
Topic: Semantic Text Mining
Presentation transcript:

Qingxia Liu qxliu.nju@gmail.com Interactive Hierarchical Tag Clouds for Summarizing Spatiotemporal Social Contents [ICDE 2014] Kang, Wei, Anthony KH Tung, Feng Zhao, and Xinyu Li Qingxia Liu qxliu.nju@gmail.com

Websoft Research Group Introduction Goal interactive exploration of regions by summarizing and browsing social network contents Input Social network contents: textual microblogs e.g. tweets User specified time, region Output Topic hierarchies Websoft Research Group

Vesta: http://db128gb-b.ddns.comp.nus.edu.sg/kangwei/bicluster/

Partition-and-merge Scheme in Vesta biclustering time latitude longitude hLDA Websoft Research Group

Websoft Research Group Biclustering Bicluster (T, C) Cluster in two directions (tags, contents) Density: non-zero rate of corresponding submatrix Formal context (A, O, I) -- bicluster Fullness: 所对应的矩阵全为1 Maximum: 再添如任一行或列都将引入0值 Galois operations A’, A’’ Biclustering 双聚类、联合聚类 Formal Concept Analysis (FCA) 形式概念分析 Fullness: 任意a,o属于A,O, (a,o)∈I,即任意一对a,o均存在关系I Maximum:新加入任何a或者o都会引入不存在关系I的a,o对 Websoft Research Group

Websoft Research Group Online Merging Merging Biclusters sharing most common tags δden = # of 1s/ # of total entries Websoft Research Group

Online Merging Merging Topic Hierarchies Given: m topic hierarchies, # of levels n0, # of tags for each level of the result Each tag only appears in one level Weight function

Evaluation Performance

Evaluation Precision & Recall Offline scalability

Websoft Research Group Conclusion Contributions Summary generation by biclustering Extended disk-based PM scheme Topic hierarchies by hLDA and merging Websoft Research Group

Websoft Research Group v.s. RDF data management Similarities Collection of information containers tweets v.s. entity descriptions Can be clustered into topics Differences Independent plain texts v.s. Linked entities Feature : keywords v.s. property,value Future Work Entity Feature extraction Topic generation Link summarization Websoft Research Group

Websoft Research Group Thank You ! Websoft Research Group

Websoft Research Group