POPULATIONS.

Slides:



Advertisements
Similar presentations
POPULATIONS.
Advertisements

Standard Bf : The student will demonstrate an understanding of the interrelationships among organisms and the biotic and abiotic indicators of their environments.
POPULATIONS.  Population-all of the individuals of a species that live together in one place at one time.  Demography-the statistical study of populations.
Populations.
POPULATIONS AND HOW THEY GROW
How Populations Grow What is a population?  A population consists of all the individuals of a species that live together in one place at one time. What.
Chapter 15: Populations Section 1: How populations grow.
Copyright © 2009 Benjamin Cummings is an imprint of Pearson Population Biology Concepts Population ecology Carrying capacity Reproductive strategies Survivorship.
Biology Review Ch 15 Populations Review.
Population Dynamics.
 Population - an interbreeding group of individuals of a single species that occupy the same general area.  Community- interacting populations that.
What Is a Population? A population is a group of organisms of the same species that live in a specific geographical area and interbreed. A population is.
Factors Affecting Population Change. Exponential Vs. Logistic Growth.
Chapter 16: Populations.
Chapter 4: Population Biology
Biology 15.2 How Populations Evolve How Populations Evolve.
Population Ecology Chapter 4. GPS SB4 Students will assess the dependence of all organisms on one another and the flow of energy and matter within their.
POPULATIONS CHAPTER 19. POPULATIONS  Population-all of the individuals of a species that live together in one place at one time.  Demography-the statistical.
CHAPTER 15 HOW A POPULATION GROWS. What is a population? ALL INDIVIDUALS OF A SPECIES THAT LIVE IN ONE PLACE AT ONE TIME.
Chapter 16 Populations!. Section 1 How Populations Grow Objectives Distinguish among the three patterns of dispersion in a population. Contrast exponential.
Ch. 15 : Populations. What is a Population? Populations **Population: All individuals of a species living in a certain place Growth? Birth of offspring.
 Do you think that a population can just grow forever and forever?
POPULATIONS.
POPULATIONS.
Evolution as Genetic Change
17.2 Evolution as Genetic Change in Populations
Chapter 15 Populations.
Biology 1 Notes- Chapter 16 (pages ) Evolution of Populations
How are Communities different than Populations?
POPULATIONS.
POPULATIONS & CARRYING CAPACITY
Section 2: Genetic Change
POPULATIONS.
Factors Affecting Population Change
Evolution of Populations and Species
POPULATIONS.
POPULATION ECOLOGY.
Population Ecology Ch 8.
Bellwork: What indicates that a population is evolving
UNIT 7: Evolution How do populations grow?
17.2 Evolution as Genetic Change in Populations
17.2 Evolution as Genetic Change in Populations
Population Concepts & Impacts on the Environment
Objectives Describe the three main properties of a population.
Ch. 8 Env. Science Ch. 5 Biology
Section 2: Genetic Change
Copyright Pearson Prentice Hall
Population Ecology.
Bellringer Brainstorm about two examples of mutations.  One mutation would be useful and beneficial, while the other would be harmful.  Discuss how the.
17.2 Evolution as Genetic Change in Populations
16-2 Evolution as Genetic Change
Copyright Pearson Prentice Hall
POPULATIONS
Population Features Size- How many of one type of organism that exist.
POPULATIONS.
POPULATIONS.
Copyright Pearson Prentice Hall
What Is a Population? A population is a group of organisms of the same species that live in a specific geographical area and interbreed. A population is.
Unit 4: Principles of Ecology
POPULATIONS.
17.2 Evolution as Genetic Change in Populations
POPULATIONS
Biodiversity, Species Interactions, and Population Control
POPULATIONS.
Things To Do Objectives Pick up notes and handouts
Phenomenon: The environment limits the growth of a population
Chapter 11 Evolution of Populations
Population Concepts & Impacts on the Environment
POPULATIONS.
Presentation transcript:

POPULATIONS

POPULATIONS Population-all of the individuals of a species that live together in one place at one time. Demography-the statistical study of populations. It is used to predict how the size of a population will change.

KEY FEATURES OF POPULATIONS 1. Population size – is the number of individuals in a population. – has an important effect on the ability of the population to survive. A small population is more likely to become extinct: -in the case of random events or natural disaster -due to inbreeding where the population is more genetically alike because recessive traits are more likely to appear -with reduced variability it is harder to adapt to changes

KEY FEATURES OF POPULATIONS 2. Population density – the number of individuals in a given area. – if they are too far apart they may only rarely encounter one another resulting in little reproduction.

KEY FEATURES OF POPULATIONS Population size is limited by: density-dependent factors Disease Competition Predators Parasites Food Crowding The greater the population, the greater effect these factors have. Ex. Black plague in the Middle Ages – more deaths in cities density-independent factors Volcanic eruptions Temperature Storms Floods Drought Chemical pesticides Major habitat disruption (as in the New Orleans flooding) Most are abiotic factors

KEY FEATURES OF POPULATIONS 3. Dispersion – the way in which the individuals are arranged. Most common

PREDICTING POPULATION GROWTH Model: A hypothetical population that has key characteristics of the real population being studied. Used by demographers to predict how a population will grow.

PREDICTING POPULATION GROWTH Nearly all populations will tend to grow exponentially as long as there are resources available. Two of the most basic factors that affect the rate of population growth are the birth rate, and the death rate. r(rate of growth)=birth rate – death rate

PREDICTING POPULATION GROWTH Exponential growth curve: population growth plotted against time. As a population gets larger, it also grows at a faster rate. This is the maximum population growth under ideal circumstances. Includes plenty of room for each member, unlimited resources (food, water) and no hindrances (predators). FACT: No population exhibits this type of growth for long.

PREDICTING POPULATION GROWTH Logistic model: This model accounts for the declining resources available to populations as they grow. It assumes the birth and death rates are not constant. As the population grows, births decline and death rises. Eventually birth=death so the population stops growing. Carrying capacity (K): The number of organisms of one species that an environment can support indefinitely.

PREDICTING POPULATION GROWTH Two modes of population growth The Exponential curve (also known as a J-curve) occurs when there is no limit to population size. The Logistic curve (also known as an S-curve) shows the effect of a limiting factor (in this case the carrying capacity of the environment).

POPULATION GROWTH STRATEGIES There are 2 ways a population can prosper: Depends on the rate of growth (r) Influenced by the carrying capacity (K)

POPULATION GROWTH STRATEGIES r-strategists: characterized by exponential growth, which results in temporarily large populations, followed by sudden crashes in population size. Ex. Insects, bacteria, some plants live in unpredictable and rapidly changing environments Reproduce quickly when conditions are favorable Many offspring: small, mature rapidly, no parental care r = rate of growth

POPULATION GROWTH STRATEGIES K-strategists: characterized by a high degree of specialization. Ex. Trees, whales, tigers, etc. Live in stable and predictable environments Can compete effectively Reproduce late in life Few offspring: large, mature slowly, often much parental care K = carrying capacity

POPULATION GROWTH STRATEGIES Human Populations: K- strategist characteristics In recent times however, man has learned to expand the carrying capacity of his environment by increasing food supply, combating pests and curing diseases. Can Earth support this increase? Damage to the planet will eventually reduce the carrying capacity for humanity and slow the growth of the human population.

HOW POPULATIONS EVOLVE Charles Darwin: Natural selection causes biological diversity. Modern version: Populations contain individuals with different versions of genes called alleles. Alleles that improve the chances of survival and reproduction are favored and become more common. Changes are caused by mutations in DNA.

Hardy-Weinberg Principle In 1908 G.H. Hardy and Wilhelm Weinberg showed that dominant alleles do not replace recessive ones. The Hardy-Weinberg Principle states: populations do not change unless evolutionary forces act upon them.

Hardy-Weinberg Principle Background Information Recall, it is at the population level that evolution occurs. A population is a group of individuals of the same species in a given area whose members can interbreed. Because the individuals of a population can interbreed, they share a common group of genes known as the gene pool. Each gene pool contains all the alleles for all the traits of all the population. For evolution to occur in real populations, some of the gene frequencies must change with time. The gene frequency of an allele is the number of times an allele for a particular trait occurs compared to the total number of alleles for that trait. Gene frequency = the number of a specific type of allele / the total number of alleles in the gene pool

Hardy-Weinberg Principle An important way of discovering why real populations change with time is to construct a model of a population that does not change. This is just what Hardy and Weinberg did. Their principle describes a hypothetical situation in which there is no change in the gene pool (frequencies of alleles), hence no evolution.

Hardy-Weinberg Principle The frequencies of the alleles will remain unchanged generation after generation if the following conditions are met: 1. Large population. The population must be large to minimize random sampling errors. Genetic drift, the random change in allele frequency in a population, can cause great change in small populations. 2. Random mating. There is no mating preference. 3. No mutation. The alleles must not change. 4. No migration. Exchange of genes between the population and another population (gene flow) must not occur. 5. No natural selection. Natural selection must not favor any particular individual. Natural selection is the process by which populations change in response to their environment.

Natural Selection Shapes Populations Natural selection is a powerful agent of genetic change. HOWEVER: there are limits to what it can accomplish because selection does not act directly on genes. Natural selection acts on phenotype, NOT geneotype. THEREFORE: selection against unfavorable recessive alleles is SLOW.

Natural Selection Shapes Populations Polygenic trait: A characteristic influenced by several genes. There are three types of selection on polygenic traits. 1. directional 2. stabilizing 3. disruptive

Natural Selection Shapes Populations DIRECTIONAL SELECTION STABILIZING SELECTION DISRUPTIVE SELECTION Favors one extreme phenotype Favors the average phenotype Favors both extreme phenotypes Possible reason: Predators can identify easier and eat the average type organism

This powerpoint was kindly donated to www.worldofteaching.com http://www.worldofteaching.com is home to over a thousand powerpoints submitted by teachers. This is a completely free site and requires no registration. Please visit and I hope it will help in your teaching.