Transcription and Translation

Slides:



Advertisements
Similar presentations
8.4 DNA Transcription 8.5 Translation
Advertisements

Activate Prior Knowledge
Proteins are made in the ribosomes outside the nucleus.
8.4 Transcription outsideProteins are made in the ribosomes outside the nucleus. DNA is copied (replicated) in the nucleus but cannot leave the nucleus.
RNA carries DNA’s instructions.
Chapter 8 Section 8.5: Translation 1. Objectives SWBAT describe how mRNA codons are translated into amino acids. SWBAT summarize the process of protein.
DNA and Translation Gene: section of DNA that creates a specific protein Approx 25,000 human genes Proteins are used to build cells and tissue Protein.
Amino acids are coded by mRNA base sequences.
8.2 Structure of DNA KEY CONCEPT DNA structure is the same in all organisms.
8.5 Translation TEKS 4B, 6C The student is expected to: 4B investigate and explain cellular processes, including homeostasis, energy conversions, transport.
8.5 Translation KEY CONCEPT Translation converts an mRNA message into a protein.
8.4 Transcription KEY CONCEPT Transcription converts a gene into a single-stranded RNA molecule.
8.5 Translation KEY CONCEPT Translation converts an mRNA message into a polypeptide, or protein.
8.3 DNA Replication KEY CONCEPT DNA replication copies the genetic information of a cell.
Protein Synthesis The Making of Proteins Using the Genetic Information Stored in DNA.
8.5 Translation Wed., 10/26 Write Questions & ANSWERS! Wed., 10/26 Write Questions & ANSWERS! 1.REPLICATE this DNA: A G G T C A T G C 2. TRANSCRIBE this.
PROTEIN SYNTHESIS.
Amino acids (protein building blocks) are coded for by mRNA base sequences.
Protein Synthesis.
Step 3 in Protein Synthesis
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
Triplet code Codon = 3 mRNA bases =codon chart…use mRNA to code
RNA carries DNA’s instructions.
RNA carries DNA’s instructions.
RNA carries DNA’s instructions.
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
12-3 RNA and Protein Synthesis
RNA carries DNA’s instructions.
RNA carries DNA’s instructions.
Genetics The Central Dogma
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
8.5 Key Concept: Translation converts an mRNA message into a polypeptide, or protein.
RNA carries DNA’s instructions.
Proteins are made of amino acids
Section 8-5 “Translation”
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
RNA carries DNA’s instructions.
KEY CONCEPT Transcription converts a gene into a single-stranded RNA molecule.
Transcription/ Translation Notes 16-17
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
_____ _____ are _____ by _____ ____ sequences.
Objective: Describe the steps of Translation
DNA carries the “code of life”
Amino acids are coded by mRNA base sequences.
RNA carries DNA’s instructions.
Amino acids are coded by mRNA base sequences.
RNA carries DNA’s instructions.
Translation converts an mRNA message into a polypeptide, or protein.
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
RNA carries DNA’s instructions.
Amino acids are coded by mRNA base sequences.
RNA carries DNA’s instructions.
RNA carries DNA’s instructions.
RNA carries DNA’s instructions.
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
Amino acids are coded by mRNA base sequences.
RNA carries DNA’s instructions.
RNA carries DNA’s instructions.
RNA carries DNA’s instructions.
Presentation transcript:

Transcription and Translation Chapter 8 sections 4 & 5

KEY CONCEPT Transcription converts a gene into a single-stranded RNA molecule.

RNA carries DNA’s instructions. The central dogma states that information flows in one direction from DNA to RNA to proteins.

The central dogma includes three processes. Replication Transcription Translation replication transcription translation RNA is a link between DNA and proteins.

RNA differs from DNA in three major ways. RNA has a ribose sugar. RNA has uracil instead of thymine. RNA is a single-stranded structure.

Transcription makes three types of RNA. Transcription copies DNA to make a strand of RNA.

Amino acids are coded by mRNA base sequences. Translation converts mRNA messages into polypeptides. A codon is a sequence of three nucleotides that codes for an amino acid. codon for methionine (Met) leucine (Leu)

The genetic code matches each codon to its amino acid or function. The genetic code matches each RNA codon with its amino acid or function. three stop codons one start codon, codes for methionine

A change in the order in which codons are read changes the resulting protein. Regardless of the organism, codons code for the same amino acid.

Amino acids are linked to become a protein. An anticodon is a set of three nucleotides that is complementary to an mRNA codon. An anticodon is carried by a tRNA.

Ribosomes consist of two subunits. The large subunit has three binding sites for tRNA. The small subunit binds to mRNA.

For translation to begin, tRNA binds to a start codon and signals the ribosome to assemble. A complementary tRNA molecule binds to the exposed codon, bringing its amino acid close to the first amino acid.

The ribosome helps form a polypeptide bond between the amino acids. The ribosome pulls the mRNA strand the length of one codon.

The now empty tRNA molecule exits the ribosome. A complementary tRNA molecule binds to the next exposed codon. Once the stop codon is reached, the ribosome releases the protein and disassembles.