Cytoskeletal Bundle Mechanics

Slides:



Advertisements
Similar presentations
Sandro Keller, Heiko Heerklotz, Nadin Jahnke, Alfred Blume 
Advertisements

Volume 101, Issue 8, Pages (October 2011)
Motor Regulation Results in Distal Forces that Bend Partially Disintegrated Chlamydomonas Axonemes into Circular Arcs  V. Mukundan, P. Sartori, V.F. Geyer,
Thomas J. English, Daniel A. Hammer  Biophysical Journal 
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Goran Žagar, Patrick R. Onck, Erik van der Giessen  Biophysical Journal 
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament
John P. Hale, C. Peter Winlove, Peter G. Petrov  Biophysical Journal 
Volume 21, Issue 24, Pages (December 2011)
Shijie He, Chenglin Liu, Xiaojun Li, Shaopeng Ma, Bo Huo, Baohua Ji 
Volume 95, Issue 6, Pages (September 2008)
The Influence of Short-Chain Alcohols on Interfacial Tension, Mechanical Properties, Area/Molecule, and Permeability of Fluid Lipid Bilayers  Hung V.
Volume 107, Issue 11, Pages (December 2014)
Susanne Karsch, Deqing Kong, Jörg Großhans, Andreas Janshoff 
Mechanically Probing the Folding Pathway of Single RNA Molecules
Joseph M. Johnson, William J. Betz  Biophysical Journal 
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Nicolas Destainville, Manoel Manghi, John Palmeri  Biophysical Journal 
A. Delon, Y. Usson, J. Derouard, T. Biben, C. Souchier 
Volume 101, Issue 2, Pages (July 2011)
Luthur Siu-Lun Cheung, Konstantinos Konstantopoulos 
Lateral Mechanical Coupling of Stereocilia in Cochlear Hair Bundles
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
Simulation Studies of Protein-Induced Bilayer Deformations, and Lipid-Induced Protein Tilting, on a Mesoscopic Model for Lipid Bilayers with Embedded.
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Electronic Transport in DNA
Juan G. Restrepo, James N. Weiss, Alain Karma  Biophysical Journal 
Michael J. Rosenbluth, Wilbur A. Lam, Daniel A. Fletcher 
Volume 95, Issue 4, Pages (August 2008)
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Crowding of Molecular Motors Determines Microtubule Depolymerization
Volume 104, Issue 8, Pages (April 2013)
Random Hydrolysis Controls the Dynamic Instability of Microtubules
Power Dissipation in the Subtectorial Space of the Mammalian Cochlea Is Modulated by Inner Hair Cell Stereocilia  Srdjan Prodanovic, Sheryl Gracewski,
Volume 96, Issue 6, Pages (March 2009)
Volume 100, Issue 7, Pages (April 2011)
Volume 93, Issue 12, Pages (December 2007)
Imre M. Jánosi, Denis Chrétien, Henrik Flyvbjerg  Biophysical Journal 
Volume 105, Issue 1, Pages (July 2013)
Nano-to-Micro Scale Dynamics of P-Selectin Detachment from Leukocyte Interfaces. III. Numerical Simulation of Tethering under Flow  Michael R. King, Volkmar.
K. Venkatesan Iyer, S. Pulford, A. Mogilner, G.V. Shivashankar 
Volume 81, Issue 3, Pages (September 2001)
Volume 88, Issue 6, Pages (June 2005)
Volume 107, Issue 11, Pages (December 2014)
Volume 101, Issue 8, Pages (October 2011)
Mechanical Control of Bacterial Cell Shape
Michael Schlierf, Felix Berkemeier, Matthias Rief  Biophysical Journal 
Steven S. Andrews, Adam P. Arkin  Biophysical Journal 
Volume 95, Issue 5, Pages (September 2008)
Venkat Maruthamuthu, Margaret L. Gardel  Biophysical Journal 
Volume 94, Issue 1, Pages (January 2008)
Jeffrey R. Groff, Gregory D. Smith  Biophysical Journal 
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
An Elastic Analysis of Listeria monocytogenes Propulsion
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
John E. Pickard, Klaus Ley  Biophysical Journal 
Christina Karatzaferi, Marc K. Chinn, Roger Cooke  Biophysical Journal 
Mechanical Coupling between Myosin Molecules Causes Differences between Ensemble and Single-Molecule Measurements  Sam Walcott, David M. Warshaw, Edward P.
Enrique M. De La Cruz, Jean-Louis Martiel, Laurent Blanchoin 
The Role of Network Architecture in Collagen Mechanics
Volume 101, Issue 8, Pages (October 2011)
Dong Kong, Baohua Ji, Lanhong Dai  Biophysical Journal 
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Jérémie Barral, Frank Jülicher, Pascal Martin  Biophysical Journal 
Volume 110, Issue 12, Pages (June 2016)
Polymerization and Bundling Kinetics of FtsZ Filaments
Dynamic Role of Cross-Linking Proteins in Actin Rheology
Presentation transcript:

Cytoskeletal Bundle Mechanics Mark Bathe, Claus Heussinger, Mireille M.A.E. Claessens, Andreas R. Bausch, Erwin Frey  Biophysical Journal  Volume 94, Issue 8, Pages 2955-2964 (April 2008) DOI: 10.1529/biophysj.107.119743 Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 1 Fiber bundles consisting of F-actin. (A) Ciliary bundle from the sensory epithelium of a bullfrog saccule consisting of ∼60 stereocilia (courtesy of David P. Corey and John A. Assad). (B) Filopodium protruding from the lamellipodium of a mouse melanoma cell (reproduced from Svitkina et al. (81) by copyright permission of The Rockefeller University Press). (C) Epithelial microvilli. (D) Drosophila neurosensory micro- and macrochaete bristles (reproduced from Tilney et al. (82) with the permission of The American Society for Cell Biology). Biophysical Journal 2008 94, 2955-2964DOI: (10.1529/biophysj.107.119743) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 2 Theoretical bundle model. (A) Cross-linked fiber bundle with N=16 fibers. Discrete cross-links couple nearest-neighbor fibers mechanically in stretching and bending. (B) (left) Deformed backbone of a fiber bundle subject to in-plane bending; (middle) close-up view of three typical fibers showing fiber and cross-link deformations in (faded gray lines) decoupled and (solid black lines) fully coupled bending; (right) transverse distributions of fiber axial displacement, u(k)(x,y), and (arrows) mean axial displacement, u¯(k)(x) in (faded gray lines) decoupled and (solid black lines) fully coupled bending. Biophysical Journal 2008 94, 2955-2964DOI: (10.1529/biophysj.107.119743) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 3 Theoretical bundle-bending stiffness. (A) Dependence of normalized bending stiffness, κB∗≔κB/κf, on filament number, N, for various constant values of the fiber coupling parameter, α={10−1,100,101,102,103,104} (bottom to top). Thick lines denote (bottom) decoupled and (top) fully coupled bending regimes. (B) Dependence of κB∗ on α at constant N={4,9,16,…,100} (bottom to top). Dotted lines correspond to Timoshenko theory predictions. Inset: Dependence of the crossover values, α, of the fiber coupling parameter on bundle filament number, N, at the (bottom curves) decoupled-to-intermediate and (top curves) fully coupled-to-intermediate regime crossovers for (squares) pinned and (circles) clamped boundary conditions. Solid lines indicate N-independent and linear-in-N scaling. Crossover values of α are defined by the value of α at which κB is within a factor of two of its limiting decoupled and fully coupled values. Biophysical Journal 2008 94, 2955-2964DOI: (10.1529/biophysj.107.119743) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 4 Experimental and theoretical bending stiffness of fascin cross-linked actin bundles for N=27±6. Experimental bundle stiffness (symbols) is measured using a microemulsion droplet system for a range of fascin concentrations with corresponding mean spacings, δ: (squares) 40nm, (circles) 56nm, (diamonds) 68nm, (pointed-up-triangles) 225nm, (pointed-down-triangles) 412nm, as described in Claessens et al. (29). Bundle length is varied in an uncorrelated fashion by a factor of over two. Cross-linker axial spacing is calculated using a simple Langmuir isotherm approximation, δ=δmin(Kd+cfascin)/cfascin(83,84), where δmin=37.5   nm is the minimum in-plane spacing between ABPs in hexagonally ordered actin bundles (31) and Kd=0.5   μM is the fascin-actin dissociation constant (83,84). Theoretical bundle stiffness (solid line) is calculated using Eq. 2 with c=5 (Appendix) assuming N=27, and bounding curves (dashed lines) that account for experimental uncertainty are calculated using N=21 and N=33. Biophysical Journal 2008 94, 2955-2964DOI: (10.1529/biophysj.107.119743) Copyright © 2008 The Biophysical Society Terms and Conditions

Figure 5 Bundle-bending stiffness state diagram for various cytoskeletal bundles. Dashed lines denote crossovers between (I) decoupled, (II) shear-dominated, and (III) fully coupled bending regimes. (a) Acrosomal process of the horseshoe crab sperm cell (64); (b) vertebrate hair cell stereocilia (2,3,66); (c) brush-border microvilli (2,3,85); (d) stress fibers; (e) filopodia (16); (f) Drosophila neurosensory bristles (59); and (g) outer pillar hair cell MT bundles (25). Spacing between ABPs is taken to be the minimal in-plane value for hexagonally packed bundles, δ=37.5   nm(31). Extensional stiffnesses are EfAf=4.4×10−8N   and   2.6×10−7N, for F-actin (41) and MTs (40), respectively. Biophysical Journal 2008 94, 2955-2964DOI: (10.1529/biophysj.107.119743) Copyright © 2008 The Biophysical Society Terms and Conditions