IceCube Construction and Analysis Report

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

AMANDA Lessons Antarctic Muon And Neutrino Detector Array.
Use of floating surface detector stations for the calibration of a deep-sea neutrino telescope G. Bourlis, N. A. B. Gizani, A. Leisos, A. G. Tsirigotis,
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
Sean Grullon For the IceCube Collaboration Searching for High Energy Diffuse Astrophysical Neutrinos with IceCube TeV Particle Astrophysics 2009 Stanford.
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Antares/KM3NeT M. de Jong. neutrinos  p Scientific motivation: – origin cosmic rays – birth & composition relativistic jets – mechanism of cosmic particle.
IAU Sydney Per Olof Hulth Particle Astronomy from Antarctica Per Olof Hulth Stockholm University.
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
IceTop Tank Calibration Abstract This report outlines the preliminary method developed to calibrate IceTop tanks using through going single muon signals.
The next generation of Neutrino telescopes -ICECUBE Design and Performance, Science Potential Albrecht Karle University of Wisconsin-Madison
A. Karle UW Madison 1. 2 Why neutrino astronomy? Astrophysical Accelerators Neutrinos allow for observation of ‘hidden regions’ of cosmic accelerators.
AMANDA Results from the AMANDA neutrino telescope Carlos P. de los Heros Department of High Energy Physics Uppsala University.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
Neutrino Point Source Searches with IceCube 22 String Configuration Michael Baker, for the IceCube Collaboration University of Wisconsin, Madison APS April.
Agustín Sánchez-Losa IFIC (CSIC-Universitat de València) Transient sources, like AGNs or Gamma Ray Bursters, are among.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
C Alexander Kappes for the IceCube Collaboration 23 rd European Cosmic-Ray Symposium Moscow, 7. July 2012 Neutrino astronomy with the IceCube Observatory.
Ronald Bruijn – 10 th APP Symposium Antares results and status Ronald Bruijn.
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
1 Cosmic Rays in IceCube: Composition-Sensitive Observables Chihwa Song a, Peter Niessen b, Katherine Rawlins c for the IceCube collaboration a University.
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
The IceCube Neutrino Observatory is a cubic kilometer detector at the geographic South Pole. We give an overview of searches for time-variable neutrino.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
The ANTARES detector: background sources and effects on detector performance S. Escoffier CNRS Centre de Physique des Particules de Marseille on behalf.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
High-energy gammas from the giant flare of SGR of December 2004 in AMANDA Juande D. Zornoza on behalf of the IceCube.
Alexander Kappes Extra-Galactic sources workshop Jan. 2009, Heidelberg Gamma ray burst detection with IceCube.
Nov 30, 2003Tom Gaisser The IceTop component of IceCube Perspective from the South Pole.
Alexander Kappes (E. Strahler, P. Roth) ECAP, Universität Erlangen-Nürnberg for the IceCube Collaboration 2009 Int. Cosmic Ray Conf., Łódź,
Physical Description of IceTop 3 Nov IceTop Internal Review Madison, November 3-4, 2010 Physical Description of IceTop Paul Evenson, University.
I Taboada, GA Tech High-energy neutrino astronomy with IceCube Ignacio Taboada Georgia Institute of Technology for the IceCube collaboration Madison, NDM.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
IceTop Design: 1 David Seckel – 3/11/2002 Berkeley, CA IceTop Overview David Seckel IceTop Group University of Delaware.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
Search for Ultra-High Energy Tau Neutrinos in IceCube Dawn Williams University of Alabama For the IceCube Collaboration The 12 th International Workshop.
First All-Sky Measurement of Muon Flux with IceCube IceCube REU Summer 2008 Kristin Rosenau Advisor: Teresa Montaruli.
Downgoing Muons in the IceCube experiment: Final presentation for Phys 735, Particle, Prof. Sridhara Dasu L.Gladstone 2008 Dec 3.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
The IceCube Neutrino Observatory is a cubic kilometer detector currently under construction at the geographic South Pole. We will give an overview of searches.
Imaging the Neutrino Universe with AMANDA and IceCube
Status of the Baikal-GVD experiment
Muons in IceCube PRELIMINARY
Search for neutrinos from gamma-ray bursts with the ANTARES telescope
completed in austral season South Pole completed in austral season.
Direct Measurement of the Atmospheric Muon Spectrum with IceCube
The Antares Neutrino Telescope
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
IceCube: Neutrino telescope & cosmic-ray detector
Performance of the AMANDA-II Detector
IC40 Physics Run Preparations
Results on the Spectrum and Composition of Cosmic Rays
GLAST Workshop April 13, 2007 Argonne National Lab
Brennan Hughey for the IceCube Collaboration
Erik Strahler UW-Madison 4/27/2008
science with 40 IceCube strings
Prospects and Status of the KM3NeT Neutrino Telescope E. Tzamariudaki
Karen Andeena, Katherine Rawlinsb, Chihwa Song*a
VLVnT08 Summary Talk E. Migneco.
AMANDA-II Point Source Search Results
Brennan Hughey for the IceCube Collaboration
Unfolding performance Data - Monte Carlo comparison
Time-Dependent Searches for Neutrino Point Sources with IceCube
IC59+40 Point Source Analysis
Presentation transcript:

IceCube Construction and Analysis Report Martijn Duvoort Sterrekundig Instituut Utrecht Faculty of Science, Department of Physics and Astronomy, University of Utrecht Princetonplein 5, NL-3584 CC Utrecht, The Netherlands M.R.Duvoort@phys.uu.nl http://www.phys.uu.nl/~duvoort

Neutrino Astronomy protons E>1019 eV (<30 Mpc) neutrinos gammas < 50 Mpc for E<100 TeV Cosmic accelerator 1 pc ~ 3 ly ~ 1018 cm 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

Introducing IceCube 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

IceTop InIce IceCube Three more deployment seasons to finish in 2011 2007-2008: 18 2006-2007: 13 Strings 2005-2006: 8 Strings 2004-2005 : 1 String IceTop total of 40 Strings IceCube: 0.5 km3 AMANDA: 0.016 km3 Air shower detetor threshold ~ 300 TeV InIce first data 2005 upgoing muon 18. Juli 2005 70-80 Strings , 60 Optical Modules 17 m between Modules 125 m between Strings IceCube fügt sich ins Gesamtbild ein -> AMANDA 19 Strings 677 Modules Three more deployment seasons to finish in 2011 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

IceCube 40 First km-scale detector 31 times AMANDA Fully digital waveforms In-ice timing calibration 0.5 - 1 degree resolution (depending on track length) Data since March 2008 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

Drs. M.R. Duvoort - University of Utrecht 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

IC22 Events ( Red hits = early; yellow/green/blue = later ) IceCube DOM locations blue, AMANDA OM locations red Downward cosmic-ray event (“muon bundle”) Upward candidate n event 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

IceCube extensions – Deep Core IceCube DOM technology AMANDA has no veto coverage from top, (which is where the muons come from) Ice below 2100m is exceptionally clear, significantly better even than current ice model. Swedish proposal funded by Wallenberg Foundation 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

γ - ν coincident analysis per GRB Current GRB analyses γ - ν coincident analysis per GRB Fails in case of time difference Rolling time window Needs GRB with multiple ν detections Only 1 – 10% of GRBs will induce signal ν Halzen & Hooper 1999, Astrophys. J. 527 (1999) L93 Need new method Should cope with time difference Should allow for cumulative statistics 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

Stacking T T T + Need to cut the background! T T+∆ T-∆ T T+∆ T-∆ T T+∆ time T T+∆ T-∆ T T+∆ T-∆ T T+∆ T-∆ ν data Need to cut the background! + T T+∆ T-∆ 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

Stacking around the GRB Bkg suppression by GRB location 5 deg area around GRB position 0.5 – 1 deg resolution → cut bkg keep signal Used 100 GRBs background determination → off-time sample Signal + Background On-source Background Off-time 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

Sensitivity of our method Parameters determining sensitivity Number of bursts in sample Fraction f of GRBs which yield a signal ν Detection in case of 5 σ effect Minimal f as function of #GRBs for detection Swift and GLAST nicely coincide with IceCube 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

Conclusion 1 km3 ν detector: discovery in coming year(s) Astropart. Phys 28 (2008) 540 f: the fraction of GRBs inducing a signal ν 1 km3 ν detector: discovery in coming year(s) 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203

Current Status Data reconstruction 4 years of full AMANDA data 2 years of IceCube data Off-time bkg determination in process (blind) sample used to settle final analysis cuts Unblinding proposal expected this spring Run final analysis on unblinded sample 18-1-2019 Drs. M.R. Duvoort - University of Utrecht M.R.Duvoort@phys.uu.nl +31-(0)30-2535203