Striatal Plasticity and Basal Ganglia Circuit Function

Slides:



Advertisements
Similar presentations
Overview of the striatum
Advertisements

Basal Ganglia Dr. G.R. Leichnetz.
Schematic wiring diagram of the basal ganglia
Volume 62, Issue 5, Pages (June 2009)
Zhejiang University Ling Shucai
Volume 92, Issue 5, Pages (December 2016)
Volume 91, Issue 2, Pages (July 2016)
How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission
Volume 49, Issue 6, Pages (March 2006)
Cortical Sensorimotor Reverberations
Basal ganglia movement modulation
Basal ganglia function
Aphroditi A. Mamaligas, Christopher P. Ford  Neuron 
Volume 60, Issue 3, Pages (November 2008)
Presynaptic Self-Depression at Developing Neocortical Synapses
Volume 79, Issue 2, Pages (July 2013)
RGS4 Is Required for Dopaminergic Control of Striatal LTD and Susceptibility to Parkinsonian Motor Deficits  Talia N. Lerner, Anatol C. Kreitzer  Neuron 
Beyond the Dopamine Receptor
Nipping Fear in the Bud: Inhibitory Control in the Amygdala
Dissecting the Dynamics of Corticothalamic Feedback
Parkinson’s Disease: A Thalamostriatal Rebalancing Act?
Deep Brain Stimulation for Neurologic and Neuropsychiatric Disorders
Basal Ganglia Made by : dani mamo.
Basal Ganglia.
Pausing to Regroup: Thalamic Gating of Cortico-Basal Ganglia Networks
Volume 94, Issue 4, Pages e5 (May 2017)
Applying the Brakes: When to Stop Eating
Volume 88, Issue 2, Pages (October 2015)
Endocannabinoid Signaling and Synaptic Function
The Brain on Drugs: From Reward to Addiction
Karina P. Abrahao, Armando G. Salinas, David M. Lovinger  Neuron 
Volume 62, Issue 5, Pages (June 2009)
Eleanor H. Simpson, Christoph Kellendonk, Eric Kandel  Neuron 
Group 1 mGluR-Dependent Synaptic Long-Term Depression: Mechanisms and Implications for Circuitry and Disease  Christian Lüscher, Kimberly M. Huber  Neuron 
Julien Courchet, Franck Polleux  Neuron 
Aligning a Synapse Neuron
Activity-Dependent Regulation of Synapses by Retrograde Messengers
Group 1 mGluR-Dependent Synaptic Long-Term Depression: Mechanisms and Implications for Circuitry and Disease  Christian Lüscher, Kimberly M. Huber  Neuron 
Volume 89, Issue 5, Pages (March 2016)
Susannah J. Tye, PhD, Mark A. Frye, MD, Kendall H. Lee, MD, PhD 
Hyoung F. Kim, Hidetoshi Amita, Okihide Hikosaka  Neuron 
The Basal Ganglia Over 500 Million Years
From Anatomy to Electrophysiology: Clinical Lasker Goes Deep
Christian Lüscher, Robert C. Malenka  Neuron 
Aaron D. Milstein, Ivan Soltesz  Neuron 
Striatal Contributions to Declarative Memory Retrieval
Theofanis Karayannis, Gordon Fishell  Cell Stem Cell 
Brain Reward Circuitry
Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms
Circuitry of self-control and its role in reducing addiction
There and Back Again: The Corticobulbar Loop
Dichotomous Organization of the External Globus Pallidus
Amygdala Inhibitory Circuits and the Control of Fear Memory
Marta Navarrete, Alfonso Araque  Neuron 
Beyond the Dopamine Receptor
Perisomatic Inhibition
Cortical Cliques: A Few Plastic Neurons Get All the Action
Dilja D. Krueger, Nils Brose  Neuron 
Basal ganglia: New therapeutic approaches to Parkinson's disease
Volume 46, Issue 1, Pages 4-7 (April 2005)
Anatomy of the basal ganglia
Juan Mena-Segovia, J. Paul Bolam  Neuron 
BASAL NUCLEI. BASAL NUCLEI Basal Ganglia Functions Compare proprioceptive information and movement commands. Sequence movements. Regulate muscle tone.
Fabian Chersi, Neil Burgess  Neuron 
Plasticity of Inhibition
When Acetylcholine Unlocks Feedback Inhibition in Cortex
Connectivity in the basal ganglia.
Kevin J. Mastro, Aryn H. Gittis  Neuron 
Biological Functions of Activity-Dependent Transcription Revealed
Volume 90, Issue 1, Pages (April 2016)
Presentation transcript:

Striatal Plasticity and Basal Ganglia Circuit Function Anatol C. Kreitzer, Robert C. Malenka  Neuron  Volume 60, Issue 4, Pages 543-554 (November 2008) DOI: 10.1016/j.neuron.2008.11.005 Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 1 Direct- and Indirect-Pathway Basal Ganglia Circuits Sagittal view of a mouse brain (A), depicting cortex-basal ganglia-thalamus-cortex circuits. Axons from the thalamus and striatum form excitatory synapses onto striatonigral/direct-pathway medium spiny neurons (MSNs) (blue) and striatopallidal/indirect-pathway MSNs (red). Direct-pathway MSNs send axons directly to basal ganglia output nuclei (GPm, medial globus pallidus; SNr, substantia nigra pars reticulata), where they form inhibitory synapses. Indirect-pathway MSNs inhibit neurons in the globus pallidus (GP), which in turn make inhibitory connections with the subthalamic nucleus (STN). STN projections target the GPm and SNr, where they form excitatory synapses onto GABAergic basal ganglia output neurons. These inhibitory output neurons send axons to ventroposterior thalamic motor nuclei. Finally, glutamatergic neurons in the thalamus project back to cortex, completing the circuit. Sagittal slices from a BAC transgenic mouse expressing GFP under the control of genomic regulatory elements for the dopamine D2 receptor (D2-GFP) (B), or the muscarinic M4 receptor (M4-GFP) (C), which labels indirect- and direct-pathway MSNs, respectively, are also shown. Figure inspired by Gerfen (2006). Neuron 2008 60, 543-554DOI: (10.1016/j.neuron.2008.11.005) Copyright © 2008 Elsevier Inc. Terms and Conditions

Figure 2 Synaptic Plasticity in the Striatum (A) Simplified schematic of striatal neurons and their interconnections. Cortical pyramidal neurons (green) project to striatal interneurons (INTs) and medium spiny neurons (MSNs) of the direct (blue) and indirect (red) pathways. Interneurons also form synapses on MSNs. Rectangles highlight potential sites of synaptic plasticity that could alter striatal output from MSNs. Corticostriatal synapses on direct- and indirect-pathway MSNs are expanded at right. (B) Indirect-pathway spines contain dopamine D2 receptors (D2R), group I mGluRs (mGluR1/5), and L-type voltage-sensitive calcium channels (VSCCs), which synergistically mobilize endocannabinoid (eCB) release that can induce presynaptic LTD by acting at cannabinoid receptors (CB1R). (C) Direct-pathway spines contain dopamine D1 receptors (D1R), group I mGluRs, and L-type VSCCs. Endocannabinoid-dependent LTD reportedly occurs at direct-pathway MSNs under conditions in which D1 receptors are not activated. Neuron 2008 60, 543-554DOI: (10.1016/j.neuron.2008.11.005) Copyright © 2008 Elsevier Inc. Terms and Conditions