William Stallings Computer Organization and Architecture 8th Edition

Slides:



Advertisements
Similar presentations
Control Unit Implemntation
Advertisements

CS364 CH16 Control Unit Operation
PART 5: (2/2) Processor Internals CHAPTER 15: CONTROL UNIT OPERATION 1.
CHAPTER 16 – CONTROL UNIT OPERATION
Chapter 16 Control Unit Operation No HW problems on this chapter. It is important to understand this material on the architecture of computer control units,
CS364 CH17 Micro-programmed Control
Chapter 16 Control Unit Implemntation. A Basic Computer Model.
Chapter 15 IA 64 Architecture Review Predication Predication Registers Speculation Control Data Software Pipelining Prolog, Kernel, & Epilog phases Automatic.
Computer Organization and Architecture
Group 1 Michael Bouizza Rolando Abreu Carlos De Cossio Ricardo Urena Michael Hernandez Robert Romano Sun Li Yang.
Micro-operations Are the functional, or atomic, operations of a processor. A single micro-operation generally involves a transfer between registers, transfer.
Introduction to Computer Organization and Architecture Micro Program ภาษาเครื่อง ไมโครโปรแกรม.
Dr Mohamed Menacer College of Computer Science and Engineering Taibah University CE-321: Computer.
Chapter 16 Micro-programmed Control
MICROPROGRAMMED CONTROL CH 17 Team # 2 Members: Wilmer Saint-Hilaire Alberto Mollinedo Vinicius Schuina Luis Perez.
Microprogrammed Control Chapter11:. Two methods for generating the control signals are: 1)Hardwired control o Sequential logic circuit that generates.
PART 6: (1/2) Enhancing CPU Performance CHAPTER 16: MICROPROGRAMMED CONTROL 1.
CSE 241 Computer Organization Lecture # 8 Ch. 7 Control Unit Dr. Tamer Samy Gaafar Dept. of Computer & Systems Engineering.
UNIT-III CONTROL UNIT DESIGN
Lecture 15 Microarchitecture Level: Level 1. Microarchitecture Level The level above digital logic level. Job: to implement the ISA level above it. The.
Basic Elements of Processor ALU Registers Internal data pahs External data paths Control Unit.
MICROPROGRAMMED CONTROL
Question What technology differentiates the different stages a computer had gone through from generation 1 to present?
GROUP 2 CHAPTER 16 CONTROL UNIT Group Members ๏ Evelio L. Hernandez ๏ Ashwin Soerdien ๏ Andrew Keiper ๏ Hermes Andino.
PART 4: (1/2) Central Processing Unit (CPU) Basics CHAPTER 12: P ROCESSOR S TRUCTURE AND F UNCTION.
Control Unit Operations Chapter10:. What is Control Unit (CU)?(1)  Part of a CPU or other device that directs its operation.  Tells the rest of the.
Chapter 10 Control Unit Operation “Controls the operation of the processor”
Processor Organization
Processor Organization and Architecture Module III.
Types of Micro-operation  Transfer data between registers  Transfer data from register to external  Transfer data from external to register  Perform.
Functions of Processor Operation Addressing modes Registers i/o module interface Memory module interface Interrupts.
Basic Concepts Microinstructions The control unit seems a reasonably simple device. Nevertheless, to implement a control unit as an interconnection of.
Basic Computer Organization and Design
Computer Organization and Architecture + Networks
Control Unit Operation
Micro-programmed Control
William Stallings Computer Organization and Architecture 8th Edition
CHAPTER 4 TOP LEVEL VIEW OF COMPUTER FUNCTION AND INTERCONNECTION
Chapter 9 a Instruction Level Parallelism and Superscalar Processors
Micro-Operations A computer executes a program Fetch/execute cycle
William Stallings Computer Organization and Architecture
William Stallings Computer Organization and Architecture 7th Edition
Processor Organization and Architecture
Chapter 15 Control Unit Operation
Micro-programmed Control Unit
BASIC COMPUTER ORGANIZATION AND DESIGN
Basic Processing Unit Unit- 7 Engineered for Tomorrow CSE, MVJCE.
Computer Organization and ASSEMBLY LANGUAGE
Control Unit Introduction Types Comparison Control Memory
Processor Organization and Architecture
William Stallings Computer Organization and Architecture 7th Edition
Chapter 14 Control Unit Operation
Computer Architecture
Chapter 14 Control Unit Operation
Basic Processing Unit UNIT-5.
William Stallings Computer Organization and Architecture 10th Edition
William Stallings Computer Organization and Architecture
Information Representation: Machine Instructions
Computer Architecture
Presentation transcript:

William Stallings Computer Organization and Architecture 8th Edition Chapter 15 Control Unit Operation

A computer executes a program Fetch/execute cycle Micro-Operations A computer executes a program Fetch/execute cycle Each cycle has a number of steps see pipelining Called micro-operations Each step does very little Atomic operation of CPU

Constituent Elements of Program Execution

Memory Address Register (MAR) Fetch - 4 Registers Memory Address Register (MAR) Connected to address bus Specifies address for read or write op Memory Buffer Register (MBR) Connected to data bus Holds data to write or last data read Program Counter (PC) Holds address of next instruction to be fetched Instruction Register (IR) Holds last instruction fetched

Fetch Sequence Address of next instruction is in PC Address (MAR) is placed on address bus Control unit issues READ command Result (data from memory) appears on data bus Data from data bus copied into MBR PC incremented by 1 (in parallel with data fetch from memory) Data (instruction) moved from MBR to IR MBR is now free for further data fetches

Fetch Sequence (symbolic) t1: MAR <- (PC) t2: MBR <- (memory) PC <- (PC) +1 t3: IR <- (MBR) (tx = time unit/clock cycle) or t3: PC <- (PC) +1 IR <- (MBR)

Rules for Clock Cycle Grouping Proper sequence must be followed MAR <- (PC) must precede MBR <- (memory) Conflicts must be avoided Must not read & write same register at same time MBR <- (memory) & IR <- (MBR) must not be in same cycle Also: PC <- (PC) +1 involves addition Use ALU May need additional micro-operations

Indirect Cycle MAR <- (IRaddress) - address field of IR MBR <- (memory) IRaddress <- (MBRaddress) MBR contains an address IR is now in same state as if direct addressing had been used (What does this say about IR size?)

t2: MAR <- save-address PC <- routine-address Interrupt Cycle t1: MBR <-(PC) t2: MAR <- save-address PC <- routine-address t3: memory <- (MBR) This is a minimum May be additional micro-ops to get addresses N.B. saving context is done by interrupt handler routine, not micro-ops

Execute Cycle (ADD) Different for each instruction e.g. ADD R1,X - add the contents of location X to Register 1 , result in R1 t1: MAR <- (IRaddress) t2: MBR <- (memory) t3: R1 <- R1 + (MBR) Note no overlap of micro-operations

ISZ X - increment and skip if zero Execute Cycle (ISZ) ISZ X - increment and skip if zero t1: MAR <- (IRaddress) t2: MBR <- (memory) t3: MBR <- (MBR) + 1 t4: memory <- (MBR) if (MBR) == 0 then PC <- (PC) + 1 Notes: if is a single micro-operation Micro-operations done during t4

BSA X - Branch and save address Execute Cycle (BSA) BSA X - Branch and save address Address of instruction following BSA is saved in X Execution continues from X+1 t1: MAR <- (IRaddress) MBR <- (PC) t2: PC <- (IRaddress) memory <- (MBR) t3: PC <- (PC) + 1

Each phase decomposed into sequence of elementary micro-operations Instruction Cycle Each phase decomposed into sequence of elementary micro-operations E.g. fetch, indirect, and interrupt cycles Execute cycle One sequence of micro-operations for each opcode Need to tie sequences together Assume new 2-bit register Instruction cycle code (ICC) designates which part of cycle processor is in 00: Fetch 01: Indirect 10: Execute 11: Interrupt

Flowchart for Instruction Cycle

Functional Requirements Define basic elements of processor Describe micro-operations processor performs Determine functions control unit must perform

Basic Elements of Processor ALU Registers Internal data pahs External data paths Control Unit

Types of Micro-operation Transfer data between registers Transfer data from register to external Transfer data from external to register Perform arithmetic or logical ops

Functions of Control Unit Sequencing Causing the CPU to step through a series of micro-operations Execution Causing the performance of each micro-op This is done using Control Signals

Control Signals Clock Instruction register Flags From control bus One micro-instruction (or set of parallel micro-instructions) per clock cycle Instruction register Op-code for current instruction Determines which micro-instructions are performed Flags State of CPU Results of previous operations From control bus Interrupts Acknowledgements

Model of Control Unit

Control Signals - output Within CPU Cause data movement Activate specific functions Via control bus To memory To I/O modules

Example Control Signal Sequence - Fetch MAR <- (PC) Control unit activates signal to open gates between PC and MAR MBR <- (memory) Open gates between MAR and address bus Memory read control signal Open gates between data bus and MBR

Data Paths and Control Signals

Internal Organization Usually a single internal bus Gates control movement of data onto and off the bus Control signals control data transfer to and from external systems bus Temporary registers needed for proper operation of ALU

CPU with Internal Bus

Hardwired Implementation (1) Control unit inputs Flags and control bus Each bit means something Instruction register Op-code causes different control signals for each different instruction Unique logic for each op-code Decoder takes encoded input and produces single output n binary inputs and 2n outputs

Hardwired Implementation (2) Clock Repetitive sequence of pulses Useful for measuring duration of micro-ops Must be long enough to allow signal propagation Different control signals at different times within instruction cycle Need a counter with different control signals for t1, t2 etc.

Control Unit with Decoded Inputs

Hardwired Control Unit Logic For each control signal, to derive a Boolean expression of that signal as a function of the inputs Let us consider a single control signal, C5, signal causes data to be read from the external data bus into the MBR Let us define two new control signals, P and Q, that have the following interpretation: PQ = 00 Fetch Cycle PQ = 11 Interrupt Cycle PQ = 10 Execute Cycle PQ = 01 Indirect Cycle

Hardwired Control Unit Logic Then C5 can be defined as: C5 = P # Q # T2 + P # Q # T2 That is, the control signal C5 will be asserted during the second time unit of both the fetch and indirect cycles. C5 is also needed during the execute cycle. For our simple example, let us assume that there are only three instructions that read from memory: LDA,ADD, and AND. Now we can define C5 as C5 = P # Q # T2 + P # Q # T2 + P # Q # (LDA + ADD + AND) # T2

Hardwired Control Unit Logic This same process could be repeated for every control signal generated by the processor. The result would be a set of Boolean equations that define the behavior of the control unit and hence of the processor.

Hardwired Control Unit Logic To tie everything together, the control unit must control the state of the instruction cycle. As was mentioned, at the end of each subcycle (fetch, indirect, execute, interrupt), the control unit issues a signal that causes the timing generator to reinitialize and issue T1. The control unit must also set the appropriate values of P and Q to define the next subcycle to be performed

Problems With Hard Wired Designs Complex sequencing & micro-operation logic Difficult to design and test Inflexible design Difficult to add new instructions

Chapter 16 Micro-programmed Control

Control Unit Organization

Micro-programmed Control Use sequences of instructions (see earlier notes) to control complex operations Called micro-programming or firmware

Implementation (1) All the control unit does is generate a set of control signals Each control signal is on or off Represent each control signal by a bit Have a control word for each micro-operation Have a sequence of control words for each machine code instruction Add an address to specify the next micro-instruction, depending on conditions

Today’s large microprocessor Implementation (2) Today’s large microprocessor Many instructions and associated register-level hardware Many control points to be manipulated This results in control memory that Contains a large number of words co-responding to the number of instructions to be executed Has a wide word width Due to the large number of control points to be manipulated

Micro-program Word Length Based on 3 factors Maximum number of simultaneous micro-operations supported The way control information is represented or encoded The way in which the next micro-instruction address is specified

Micro-instruction Types Each micro-instruction specifies single (or few) micro-operations to be performed (vertical micro-programming) Each micro-instruction specifies many different micro-operations to be performed in parallel (horizontal micro-programming)

Horizontal Micro-programming Wide memory word High degree of parallel operations possible Little encoding of control information

Typical Microinstruction Formats

Organization of Control Memory

Control Unit

Control Unit Function Sequence login unit issues read command Word specified in control address register is read into control buffer register Control buffer register contents generates control signals and next address information Sequence login loads new address into control buffer register based on next address information from control buffer register and ALU flags

Depending on ALU flags and control buffer register Next Address Decision Depending on ALU flags and control buffer register Get next instruction Add 1 to control address register Jump to new routine based on jump microinstruction Load address field of control buffer register into control address register Jump to machine instruction routine Load control address register based on opcode in IR

Functioning of Microprogrammed Control Unit