Cycloatoms and high order harmonics in moderate intense laser fields

Slides:



Advertisements
Similar presentations
Interferometric Measurement of Spatial Wigner Functions of Light Bryan Killett Brian J. Smith M. G. Raymer Funded by the NSF through the REU and ITR programs.
Advertisements

Robert E. Wagner Sophomore Intense Laser Physics Theory Unit Illinois State University Cycloatoms and high order harmonics in moderate intense laser fields.
The split operator numerical solution of Maxwell’s equations Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY 2000Bordeaux FranceJuly.
Atoms, Lasers and Computers Rainer Grobe Intense Laser Physics Theory Unit Illinois State University.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
An STM Measures I(r) Tunneling is one of the simplest quantum mechanical process A Laser STM for Molecules Tunneling has transformed surface science. Scanning.
Anderson localization in BECs
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
Physical Phenomena for TeraHertz Electronic Devices
Strong spin-phonon coupling is responsible for a wide range of scientifically rich and technologically important phenomena—including multiferroic properties,
The Impact of Special Relativity in Nuclear Physics: It’s not just E = Mc 2.
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
Examples of genuinely relativistic phenomena R. Grobe ICOMP VIII, Monterey, CA October 1999 Intense Laser Physics Theory Unit Illinois State University.
Excitations in Landau Levels of 2D Quantum Fluids Aron Pinczuk, Columbia University, DMR This new award will support studies of intriguing emergent.
One-Dimensional Ordering in High-Energy Ion Beams Håkan Danared Manne Siegbahn Laboratory CERN 8 December 2008.
Classical and quantum electrodynamics e®ects in intense laser pulses Antonino Di Piazza Workshop on Petawatt Lasers at Hard X-Ray Sources Dresden, September.
Robert E. Wagner Sophomore Intense Laser Physics Theory Unit Illinois State University What are Cycloatoms? Support: NSF, Res. Corp., and ISU Honors Program.
Refractive Index Enhancement without Absorption N. A. Proite, J. P. Sheehan, J. T. Green, D. E. Sikes, B. E. Unks, and D. D. Yavuz University of Wisconsin,
Example: Magnetic field control of the conducting and orbital phases of layered ruthenates, J. Karpus et al., Phys. Rev. Lett. 93, (2004)  Used.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Up to this point, we have only discussed the nucleus. In advanced atomic theory, we discuss the electrons and their behavior.
Frustrated magnets exhibit novel and useful properties, including dramatic field-sensitive properties and suppressed magnetic ordering temperatures. To.
Physics 541 A quantum approach to condensed matter physics.
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Numerical solution of Dirac equation & its applications in intense laser physics Q. Su Intense Laser Physics Theory Unit Illinois State University LPHY.
Magnetic and Electronic Quasiparticle Spectra of Iron Pnictides* E.C.Marino UFRJ Rio de Janeiro, Brazil *C.M.S da Conceição, M.B Silva Neto, E.C. Marino.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Quantum Mechanical Model. Quantum Numbers (n, l, m l, m s ) n = ____________ Quantum Number It has whole number values (1, 2, 3, …) An n increases, the.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
Arnau Riera, Grup QIC, Universitat de Barcelona Universität Potsdam 10 December 2009 Simulation of the Laughlin state in an optical lattice.
Lecture 8: Understanding the form factor 30/9/ Why is this a function of q 2 and not just q ? Famous and important result: the “Form Factor.
Spin-Orbit Torques from Interfacial Rashba-Edelstein Effects
Structured Electron Beams from Nano-engineered Cathodes
Group theory and intrinsic spin; specifically, s=1/2
Tunable excitons in gated graphene systems
Review on quantum criticality in metals and beyond
Quantum Phase Transition of Light: A Renormalization Group Study
Orbitals and Quantum Numbers
Department of Chemistry
Department of Electronics
Integer Quantum Hall Efect (lattices)
Peter J. Peverly Sophomore Intense Laser Physics Theory Unit
R.A.Melikian,YerPhI, , Zeuthen
LPHY 2000 Bordeaux France July 2000
Magneto-Photoluminescence of Carbon Nanotubes at Ultralow Temperatures
On the collapses and revivals in the Rabi Hamiltonian
Strong coupling of a superradiant spin ensemble B. C. Rose, A. M
Qiang Gu Ferromagnetism in Bose Systems Department of Physics
Novel quantum states in spin-orbit coupled quantum gases
Hydrogen relativistic effects II
High Harmonic Generation in Ionization of Magnetically Dressed Atoms
Chap. 20 in Shankar: The Dirac equation
少数体ケイオン核の課題 August 7, 2008 Y. Akaishi T. Yamazaki, M. Obu, M. Wada.
Radiation from charged particles
FIG. 7. Simulated edge localized mode magnetization and phase distributions at the 2.4 GHz resonance (top panels) and 3.6 GHz resonance (bottom panels)
Group theory and intrinsic spin; specifically, s=1/2
Chap. 20 in Shankar: The Dirac equation for a hydrogen atom
Relativistic Quantum Mechanics
Relativistic Quantum Mechanics
Electron Acoustic Waves in Pure Ion Plasmas F. Anderegg C. F
Norm Moulton LPS 15 October, 1999
Accelerator Physics Synchrotron Radiation
Radiation from charged particles
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

Cycloatoms and high order harmonics in moderate intense laser fields Robert E. Wagner Sophomore Intense Laser Physics Theory Unit Illinois State University www.phy.ilstu.edu/ILP Support: NSF, Res. Corp., and ISU Honors Program

Relativity without super-strong lasers? Magnetic field Laser

W Maximum speed v/c for each W non- relativistic relativistic wL R.E. Wagner, Q. Su and R. Grobe, Phys. Rev. Lett. 84, 3282 (2000).

Non-relativistic Relativistic Orbits stay in phase Orbits dephase relativistically Time (in 2p/wL) 75 150 500 y x

Cycloatom dynamics W=wL

Relativistic dephasing model relativistic (exact) dephasing model Time 75 150 500 replace W  W + DW (V0)

Steady state spatial electron distributions Multiple resonances W ≈ wL W ≈ 2 wL Fractional resonances W ≈ 1/2 wL W ≈ 1/3 wL W ≈ 3 wL P.J. Peverly, R.E. Wagner, Q.Su and R. Grobe, Las. Phys. 10, 303 ( 2000). Q. Su, R.E. Wagner, P.J. Peverly, and R. Grobe, Front. Las. Phys. p. 117-123 (Springer, 2000).

Cycloatom dynamics W=1/2 wL

Scattered light spectra non-relativistic relativistic R.E. Wagner, et al, PRA 60, 3233 (1999)

Quantum Mechanical Cycloatoms? Liouville P. Peverly, R. Wagner, Q. Su and R. Grobe, Las Phys. 10, 303 (2000) Dirac J. Braun, Q. Su and R. Grobe, PRA 59, 604 (1999)

Liouville Dirac Confirmed: Dirac Cycloatoms P. Krekora, R. Wagner, Q. Su and R. Grobe, PRA, submitted

• Cycloatoms reveal new relativistic phenomena Summary • Cycloatoms reveal new relativistic phenomena • Novel resonances => possible experiments [1] R.E. Wagner, Q. Su and R. Grobe, Phys. Rev. Lett. 84, 3282 (2000). [2] R.E. Wagner, Q. Su, and R. Grobe, Phys. Rev. A 60, 3233, 1999. [3] R.E. Wagner, P.J. Peverly, Q. Su and R. Grobe, Phys. Rev. A 61, 35402(2000). [4] P.J. Peverly, R.E. Wagner, Q.Su and R. Grobe, Las. Phys. 10, 303 ( 2000). [5] P. Krekora, R.E. Wagner, Q. Su and R. Grobe, PRA, submitted. [6] Q. Su, R.E. Wagner, P.J. Peverly, and R. Grobe, Front. Las. Phys. p. 117-123 (Springer, 2000). Undergraduate Student travel grant (DAMOP) www.phy.ilstu.edu/ILP