Anterior Visceral Endoderm Directs Ventral Morphogenesis and Placement of Head and Heart via BMP2 Expression  Mary Madabhushi, Elizabeth Lacy  Developmental.

Slides:



Advertisements
Similar presentations
TS 1 (0-2.5) TS 2 (1-2.5) TS 3 (1-3.5) TS 4 (2-4) TS 5 (3-5.5) TS 6 (4-5.5) TS 7 (4.5-6) TS 8 (5-6.5) TS 9 ( )
Advertisements

Volume 14, Issue 6, Pages (June 2008)
Initiation of Murine Embryonic Erythropoiesis: A Spatial Analysis
Human-Mouse Chimerism Validates Human Stem Cell Pluripotency
Federica Bertocchini, Claudio D. Stern  Developmental Cell 
Volume 11, Issue 3, Pages (September 2006)
Volume 10, Issue 1, Pages (January 2006)
Primitive erythropoiesis from mesodermal precursors expressing VE-cadherin, PECAM-1, Tie2, endoglin, and CD34 in the mouse embryo by Masatsugu Ema, Tomomasa.
Volume 17, Issue 4, Pages (October 2009)
Volume 25, Issue 5, Pages (June 2013)
Katherine Joubin, Claudio D Stern  Cell 
Volume 94, Issue 3, Pages (August 1998)
Transcriptional Control of Endothelial Cell Development
The node of the mouse embryo
Martin Gering, Roger Patient  Developmental Cell 
Volume 6, Issue 5, Pages (May 2004)
Smoothened Mutants Reveal Redundant Roles for Shh and Ihh Signaling Including Regulation of L/R Asymmetry by the Mouse Node  Xiaoyan M. Zhang, Miguel.
Volume 27, Issue 2, Pages (October 2013)
The Endoderm of the Mouse Embryo Arises by Dynamic Widespread Intercalation of Embryonic and Extraembryonic Lineages  Gloria S. Kwon, Manuel Viotti, Anna-Katerina.
IFT88 Plays a Cilia- and PCP-Independent Role in Controlling Oriented Cell Divisions during Vertebrate Embryonic Development  Antonia Borovina, Brian.
Volume 92, Issue 6, Pages (March 1998)
The fine structure of human germ layers in vivo: clues to the early differentiation of embryonic stem cells in vitro  Henry Sathananthan, Kamala Selvaraj,
Volume 13, Issue 6, Pages (December 2007)
Volume 126, Issue 6, Pages (September 2006)
Volume 9, Issue 6, Pages (December 2005)
Volume 14, Issue 2, Pages (February 2008)
Volume 94, Issue 3, Pages (August 1998)
Robert G. Kelly, Nigel A. Brown, Margaret E. Buckingham 
Oct4 Is a Key Regulator of Vertebrate Trunk Length Diversity
Axis Development and Early Asymmetry in Mammals
A Crucial Interaction between Embryonic Red Blood Cell Progenitors and Paraxial Mesoderm Revealed in spadetail Embryos  Laurel A. Rohde, Andrew C. Oates,
Depletion of Three BMP Antagonists from Spemann's Organizer Leads to a Catastrophic Loss of Dorsal Structures  Mustafa K. Khokha, Joanna Yeh, Timothy.
Le A. Trinh, Didier Y.R Stainier  Developmental Cell 
BMP Signaling Protects Telencephalic Fate by Repressing Eye Identity and Its Cxcr4- Dependent Morphogenesis  Holger Bielen, Corinne Houart  Developmental.
Nodal Signaling in Early Vertebrate Embryos
Neuropeptides: Developmental Signals in Placode Progenitor Formation
Kathleen S. Christine, Frank L. Conlon  Developmental Cell 
Volume 14, Issue 4, Pages (April 2008)
Volume 4, Issue 3, Pages (September 1999)
Nadine Peyriéras, Uwe Strähle, Frédéric Rosa  Current Biology 
Early Lineage Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through the Grb2-MAPK Pathway  Claire Chazaud, Yojiro Yamanaka,
Volume 17, Issue 12, Pages (December 2016)
Sonic hedgehog and vascular endothelial growth factor Act Upstream of the Notch Pathway during Arterial Endothelial Differentiation  Nathan D. Lawson,
Volume 23, Issue 2, Pages (August 2012)
The BMP Signaling Gradient Patterns Dorsoventral Tissues in a Temporally Progressive Manner along the Anteroposterior Axis  Jennifer A. Tucker, Keith.
Naohito Takatori, Gaku Kumano, Hidetoshi Saiga, Hiroki Nishida 
Wnt/β-Catenin Signaling and Cardiogenesis: Timing Does Matter
Volume 19, Issue 2, Pages (August 2010)
Bmp2 Signaling Regulates the Hepatic versus Pancreatic Fate Decision
Volume 14, Issue 4, Pages (April 2008)
Volume 12, Issue 11, Pages (June 2002)
Yali Huang, Rodrigo Osorno, Anestis Tsakiridis, Valerie Wilson 
Multipotent Flk-1+ Cardiovascular Progenitor Cells Give Rise to the Cardiomyocyte, Endothelial, and Vascular Smooth Muscle Lineages  Steven J. Kattman,
Won-Suk Chung, Didier Y.R. Stainier  Developmental Cell 
Stefano De Renzis, J. Yu, R. Zinzen, Eric Wieschaus  Developmental Cell 
Yu-Chiun Wang, Zia Khan, Eric F. Wieschaus  Developmental Cell 
Åsa Apelqvist, Ulf Ahlgren, Helena Edlund  Current Biology 
Genomic Analysis of Gastrulation and Organogenesis in the Mouse
Volume 31, Issue 6, Pages (December 2014)
Volume 9, Issue 5, Pages (November 2005)
Pharyngeal arch patterning in the absence of neural crest
FGF Signaling Regulates Mesoderm Cell Fate Specification and Morphogenetic Movement at the Primitive Streak  Brian Ciruna, Janet Rossant  Developmental.
Three groups of mouse mutants that show impaired AVE formation.
Volume 14, Issue 6, Pages (June 2008)
Volume 23, Issue 4, Pages (August 1999)
Volume 17, Issue 12, Pages (December 2016)
The Anterior-Posterior Axis Emerges Respecting the Morphology of the Mouse Embryo that Changes and Aligns with the Uterus before Gastrulation  Daniel.
Volume 19, Issue 2, Pages (August 2010)
Heads or tails: Wnts and anterior–posterior patterning
Volume 18, Issue 6, Pages (June 2010)
Presentation transcript:

Anterior Visceral Endoderm Directs Ventral Morphogenesis and Placement of Head and Heart via BMP2 Expression  Mary Madabhushi, Elizabeth Lacy  Developmental Cell  Volume 21, Issue 5, Pages 907-919 (November 2011) DOI: 10.1016/j.devcel.2011.08.027 Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 1 Prestreak to Head Fold Stage Embryos Express Bmp2 in the AVE (A–J) Bmp2 expression at E5.5/prestreak, (PS) (A); E6.5/midstreak (MS) (B, F, and G); E7.5/early bud (EB) (C and H); E7.5/Late Bud (LB) (D and I); and E7.5/Head Fold (HF) stages (E and J). (A–F) lateral views of whole-mount RNA in situ hybridizations; (G–J) transverse sections at the levels indicated in (B–E); anterior is to the left. (E) Inset shows frontal view of Bmp2 expression in anterior endoderm. (F) Two-color in situ hybridizations to Bmp2 (light blue) and Cer1 or brachyury (purple). Size bars in (A)–(E) represent 50 μm. All, allantois; ant midl, anterior midline; em, embryonic; em mes, embryonic mesoderm; exem, extraembryonic; exem mes, extraembryonic mesoderm; OPC, open proamniotic canal; PS, primitive streak. See also Figures S1 and S2. Developmental Cell 2011 21, 907-919DOI: (10.1016/j.devcel.2011.08.027) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 2 Lineage-Specific Mutants Show Distinct and Complementary Functions for BMP2 Expression in VE versus Epiblast Derivatives (A–C) WT embryos show proper arrangement of head, heart, amnion and allantois before (A) and after (B and C) turning. In WT, the heart resides ventral to the head and is looped; both the head and heart sit inside the amnion. (A and B) E8.5, 8–10 somite stage; (C) E9.5, 20 somite stage. >, amnion. (D–H) KO embryos show a range of phenotypes including: (D) open proamniotic canal (OPC); (E) heart-outside the amnion (Ht-out); (F) disorganized anterior (DAT); (G) unturned; and (H) all four defects: OPC + Ht-out + DAT + unturned. (I) VE-KO embryos display the DAT phenotype but not Ht-out or OPC. (J and K) EPI-KO embryos display OPC and Ht-out but not DAT (J); 20+ somite stage EPI-KO embryos (K) develop somites, a closed neural tube, and eye and ear primordia, but contain an unlooped heart and remain unturned. all, allantois; hd, head; ht, heart. See also Tables S2A and S2B. Developmental Cell 2011 21, 907-919DOI: (10.1016/j.devcel.2011.08.027) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 3 Head and Heart Are Specified in Bmp2 Mutants (A–F) WISH to markers for specification of cardiac mesoderm in WT and DAT embryos. Lateral views of Nkx2.5 stained HF stage (A and B) and 20 somite stage (E–F′) WT (A and E) and KO embryos (B, F, and F′). Dorsal view (F) and lateral view (F′) of a disorganized anterior KO embryo showing partial cardia bifida. Islet-1 (Isl-1) in 2 somite stage WT (C and C′) and VE-KO (D and D′) embryos; lateral views with anterior to the left (C and D); frontal/anterior views of the cardiac crescent (C′ and D′). (G–N) WISH to markers for head specification in WT and VE-KO embryos. Lateral views of WT (G, I, K, and M) and VE-KO (H, J, L, and N) embryos stained for Cer1 (purple) and brachyury (T, light blue) mRNA (G and H) and for Dkk1 mRNA (I and J) at the ES/MS stage; stained for Otx2 (K and L) at the 4 somite stage; and stained for Six3 (M and N) at the 6 somite stage. See also Figure S3. Developmental Cell 2011 21, 907-919DOI: (10.1016/j.devcel.2011.08.027) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 4 Disorganized Anterior KO Mutants Display Ectopic Neural Folds and Absence of the Anterior Intestinal Portal (A and B) Frontal/anterior views of WT and KO 4 somite stage embryos. Two head folds (∗) and a single neural groove (ˆ) are evident in WT (A) but not in KO (B). (C–F) Transverse sections at the regions indicated in A and B; anterior is downward. (C) Proximal WT section showing symmetrical head folds (∗) and foregut (fg). (E) Distal WT section showing the two head folds (∗), medial hinge point (ˆ), and surface ectoderm (>). (D) Proximal KO section shows uneven head folds (∗) and no gut tube (red arrow). (F) Distal KO section shows additional head folds (∗), ectopic hinge points (ˆ), surface ectoderm (>), and no gut tube. (G and H) Frontal views of Chordin mRNA staining in early somite stage WT (G) and VE-KO (H) embryos. (I and J) Scanning electron micrographs of distal views of WT (I) and VE-KO (J) early somite stage embryos: (I and J) node, red box and inset; midline (ˆ); and anterior intestinal portal (∗); 100 μm scale bar in red. See also Figure S4. Developmental Cell 2011 21, 907-919DOI: (10.1016/j.devcel.2011.08.027) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 5 Visceral Endoderm Derivatives Are Integrated into the Primitive Gut of VE-KO and KO Embryos (A–C, A′–C′, A”–C”) WT, (D and E, D′ and E′, D” and E”) VE-KO, and (F, F′, and F”) KO embryos carrying Ttr::Cre and LacZR transgenes show the position of VE-derived cells (blue) in the yolk sac and developing gut tube. (A–F) Frontal view; (A′–C′, D′–F′) lateral view; (A”–C”, D”–F”) transverse sections of HF (A–A”, D–D”), 6–8 somite (B–B”, E-E”) and 8–10 somite (C–C”, F–F”) stage embryos. end, endoderm; fg, foregut; Ht, heart; nt, neural tube; YS, yolk sac. Developmental Cell 2011 21, 907-919DOI: (10.1016/j.devcel.2011.08.027) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 6 Ectopic Neural Folds at the Site of the Absent Foregut Invagination in Early-Somite Stage VE-KO Embryos (A and B) Bright-field views of WT (A and A′) and VE-KO embryos (B and B′): frontal (A and B) lateral (A′ and B′). (C and D) 3-D reconstructed Z-Stacks of embryos in A and B stained with DAPI (blue) and with antibodies to ECAD(green) and Sox2 (red). (E and F) Frontal XY sections taken at the plane indicated by the red dashed lines in A′ and B′. Developmental Cell 2011 21, 907-919DOI: (10.1016/j.devcel.2011.08.027) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 7 Foregut Invagination Is Concurrent with Head/Heart Translocation Left: Lateral view of an early head fold stage (EHF) mouse embryo highlighting anterior embryonic/extraembryonic junction (red box) and anterior-posterior axis (white arrow). Right: Schematic of anterior em/exem region through time in WT (top row) and Bmp2 VE-KO mutant (bottom row) embryos. At EHF stages, in both WT and Bmp2 mutant embryos, the junction of the yolk sac (YS), amnion, and heart lies anterior to the head folds (HF). By the 8–10 somite stage, WT head folds have translocated anterior to the YS/amnion/heart junction, but Bmp2 mutant head folds remain posterior to the junction. In both WT and Bmp2 VE-KO embryos, the yolk sac endoderm is comprised solely of visceral endoderm derivatives while the embryonic endoderm is comprised of derivatives from both visceral endoderm (yellow) and definitive endoderm (gray). BMP2 signals from the visceral endoderm are required for both foregut invagination and for translocation of head and heart. See also Video Abstract. Developmental Cell 2011 21, 907-919DOI: (10.1016/j.devcel.2011.08.027) Copyright © 2011 Elsevier Inc. Terms and Conditions