Thresholds to use for pkmc se < 54 < ve < 59 < vi sl

Slides:



Advertisements
Similar presentations
We Can Read About Mixing Colors
Advertisements

Clustering and Probability (Chap 7). Review from Last Lecture Defined the K-means problem for formalizing the notion of clustering. Discussed the K-means.
Associative Learning Memories -SOLAR_A
Biostatistics-Lecture 4 More about hypothesis testing Ruibin Xi Peking University School of Mathematical Sciences.
Outline Data with gaps clustering on the basis of neuro-fuzzy Kohonen network Adaptive algorithm for probabilistic fuzzy clustering Adaptive probabilistic.
© red ©
Visualization and Data Mining. 2 Outline  Graphical excellence and lie factor  Representing data in 1,2, and 3-D  Representing data in 4+ dimensions.
Results Comparison with existing approaches on benchmark datasets Evaluation on a uveal melanoma datasetEvaluation on the two-spiral dataset Evaluation.
Tree-Based Methods (V&R 9.1) Demeke Kasaw, Andreas Nguyen, Mariana Alvaro STAT 6601 Project.
CISC 4631 Data Mining Lecture 03: Introduction to classification Linear classifier Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook.
Xuhua Xia Slide 1 MANOVA All statistical methods we have learned so far have only one continuous DV and one or more IVs which may be continuous or categorical.
Kids S1 Vocabulary U1 Colors. Listen and say the color:
 Create a PowerPoint from template using R software R and ReporteRs package Isaac Newton1/4.
Four Color Problem Ice Breaker Activity.
IE 585 Competitive Network – Learning Vector Quantization & Counterpropagation.
MIS 451 Building Business Intelligence Systems Demo on Classification and Clustering.
 Objective Objective  Basic Techniques Basic Techniques - Beam Penetration methodBeam Penetration method - The Shadow - Mask method.The Shadow - Mask.
Beam Penetration & Shadow Mask Method
Clustering by soft-constraint affinity propagation: applications to gene- expression data Michele Leone, Sumedha and Martin Weight Bioinformatics, 2007.
BIOSTATISTICS Explorative data analysis. Box plot QQ plot Classification analysis Copyright ©2012, Joanna Szyda INTRODUCTION.
Data Visualization.
CS623: Introduction to Computing with Neural Nets (lecture-16) Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
Introduction to Classifiers Fujinaga. Bayes (optimal) Classifier (1) A priori probabilities: and Decision rule: given and decide if and probability of.
5(I,C) (I,C) (I,C) (I,C)
In each epoch, start by clustering those points whose numeric difference from the mean is minimum in every dimension. Finish the other points with HDkM.
Near Neighbor Classifiers and FAUST Faust is really a Near Neighbor Classifier (NNC) in which, for each class, we construct a big box neighborhood (bbn)
Data Mining Introduction to Classification using Linear Classifiers
Exploring Data: Summary Statistics and Visualizations
Matt Gormley Lecture 3 September 7, 2016
Koichi Odajima & Yoichi Hayashi
What colour?.
Erich Smith Coleman Platt
Linear Discrimant Analysis(LDA)
Discriminant Analysis
Butterfly Maths Each caterpillar must be coloured the correct pattern for it to turn into a butterfly. Work out each problem to know how to colour each.
pTrees predicate Tree technologies
FROM OUTLINE TO ESSAY.
Sample to correct Test box with subtitle.
Dr. William Perrizo North Dakota State University
Tips for Creating Graphs
PTrees (predicate Trees) fast, accurate , DM-ready horizontal processing of compressed, vertical data structures Project onto each attribute (4 files)
Figure 1.1 Rules for the contact lens data.
Classifiers Fujinaga.
SW REV Position, DIFFERENCES ONLY SHOWN, L1 is the same
we call it the bip stride=m [level=1] pMap of pM
Like.
Election #1 Popular Vote Electoral Vote State Red Yellow
Vertical K Median Clustering
CS621: Artificial Intelligence Lecture 17: Feedforward network (lecture 16 was on Adaptive Hypermedia: Debraj, Kekin and Raunak) Pushpak Bhattacharyya.
Weka Free and Open Source ML Suite Ian Witten & Eibe Frank
Principal Component Analysis (PCA)
Powerpoint Review.
Align The Stars Continue.
Example Histogram c) Interpret the following histogram that captures the percentage of body-fat in a testgroup [4]:  
PA>c = Pm om ... Pk+1 ok+1 Pk
Can I color yellow?. Can I color yellow?
Wal: Spelling rules..
Q-Q plot of observed P values against theoretical P values for factor analysis (red dots) and single gene–based methods (in blue). Q-Q plot of observed.
Classifiers Fujinaga.
12.4 p 471 a) double[] number = {1.05, 2.05, 3.05, 4.05, 5.05};
What Color is it?.
Which One Doesn’t Belong?
Align The Stars Continue.
Full IRIS corrected setosa versicol verginic
FROM OUTLINE TO ESSAY.
Align The Stars Continue.
pTree-k-means-classification-sequential (pkmc-s)
Introduction.
FROM OUTLINE TO ESSAY.
PAj>c=Pj,m om...ok+1Pj,k oi is AND iff bi=1, k is rightmost bit position with bit-value "0", ops are right binding. c = bm ...
Presentation transcript:

This is 1/3 of the IRIS dataset from the UCI machine learning repository Thresholds to use for pkmc se < 54 < ve < 59 < vi sl ve < 28 < vi < 31 < se sw se < 23 < ve < 44 < vi pl se < 8 < ve < 14 < vi pw Taking: vi sl>59= 1 1 1 0 1 1 CL SL SW PL PW se 49 30 14 2 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 se 47 32 13 2 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 se 46 34 14 3 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 se 50 34 15 2 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 se 44 29 14 2 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 0 se 49 31 15 1 1 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 se 54 37 15 2 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 se 51 38 15 3 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 se 54 34 17 2 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 se 51 37 15 4 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 se 46 36 10 2 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 se 51 33 17 5 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 se 44 32 13 2 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 se 50 35 16 6 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 se 51 38 19 4 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 se 48 30 14 3 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 ve 69 31 49 15 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 ve 55 23 40 13 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 1 ve 65 28 46 15 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 ve 57 28 45 13 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 ve 63 33 47 16 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 ve 49 24 33 10 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 ve 66 29 46 13 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 ve 52 27 39 14 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 ve 62 22 45 15 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 ve 56 25 39 11 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 ve 59 32 48 18 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 ve 61 28 40 13 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 1 ve 67 31 47 15 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 ve 63 23 44 13 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 ve 56 30 41 13 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 ve 55 25 40 13 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 ve 55 26 44 12 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 ve 61 30 46 14 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 ve 58 26 40 12 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 ve 50 23 33 10 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 ve 56 27 42 13 1 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 ve 57 30 42 12 1 1 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 0 vi 65 32 51 20 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 vi 64 27 53 19 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 vi 68 30 55 21 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 vi 57 25 50 20 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 vi 58 28 51 24 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 vi 64 32 53 23 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 vi 65 30 55 18 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 vi 77 38 67 22 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 vi 77 26 69 23 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 vi 60 22 50 15 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 vi 67 33 57 25 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 vi 67 30 52 23 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1

^ 1/3 IRIS dataset Thresholds to use for pkmc se < 54 < ve < 59 < vi sl ve < 28 < vi < 31 < se sw se < 23 < ve < 44 < vi pl se < 8 < ve < 14 < vi pw vi sl> 59=111011 vi pl>44= 1 0 1 1 0 0 1 1 CL SL SW PL PW SepalLength SepalWidth PedalLength PedalWidth se 49 30 14 2 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 se 47 32 13 2 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 se 46 34 14 3 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 se 50 34 15 2 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 se 44 29 14 2 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 0 se 49 31 15 1 1 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 se 54 37 15 2 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 se 51 38 15 3 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 se 54 34 17 2 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 se 51 37 15 4 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 se 46 36 10 2 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 se 51 33 17 5 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 se 44 32 13 2 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 se 50 35 16 6 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 se 51 38 19 4 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 se 48 30 14 3 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 ve 69 31 49 15 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 ve 55 23 40 13 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 1 ve 65 28 46 15 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 ve 57 28 45 13 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 ve 63 33 47 16 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 ve 49 24 33 10 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 ve 66 29 46 13 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 ve 52 27 39 14 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 ve 62 22 45 15 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 ve 56 25 39 11 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 ve 59 32 48 18 1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 ve 61 28 40 13 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 1 ve 67 31 47 15 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 ve 63 23 44 13 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 ve 56 30 41 13 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 ve 55 25 40 13 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 ve 55 26 44 12 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 ve 61 30 46 14 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 ve 58 26 40 12 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 ve 50 23 33 10 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 ve 56 27 42 13 1 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 0 1 ve 57 30 42 12 1 1 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 0 vi 65 32 51 20 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 vi 64 27 53 19 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 vi 68 30 55 21 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 vi 57 25 50 20 1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 vi 58 28 51 24 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 vi 64 32 53 23 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 vi 65 30 55 18 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 vi 77 38 67 22 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 vi 77 26 69 23 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 vi 60 22 50 15 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 vi 67 33 57 25 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 vi 67 30 52 23 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 ^ 1 1 1 1 00 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 01 1 1 1 What we can observe so far: the red threshold (on SepalLength) rules out setosa but has trouble with both versicolor and virginica. That's because the mean of setosa is far from the means of ve and vi. So, on the red, is it working? The blue threshold (on PedalLength) rules out setosa but has trouble with both versicolor and virginica. So, on the blue, is it working? So with means as shown (thresholds chosen too), the method seems to be working. However, the thresholds between vi and ve are badly chosen. In fact the data is wrong too because the sl and pl bit-widths should be 7, not 6! I redo on the next slide.

Full IRIS corrected setosa 49.1 34.1 14.6 2.44 versicol 59.3 27.7 42.6 13.2 verginic 65.8 29.7 54.9 20.2 se < 54 < ve < 62 < vi sl ve < 28 < vi < 31 < se sw se < 23 < ve < 48 < vi pl se < 8 < ve < 17 < vi pw Sepal Length. Sepal Width Pedal Length. Pedal Wth se 51 35 14 2 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 se 49 30 14 2 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 se 47 32 13 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 se 46 31 15 2 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 se 5 36 14 2 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 se 54 39 17 4 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 se 46 34 14 3 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 se 50 34 15 2 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 se 44 29 14 2 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 se 49 31 15 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 se 54 37 15 2 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 se 48 34 16 2 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 se 48 30 14 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 se 43 30 11 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 se 58 40 12 2 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 se 57 44 15 4 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 se 54 39 13 4 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 se 51 35 14 3 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 se 57 38 17 3 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 se 51 38 15 3 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 se 54 34 17 2 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 se 51 37 15 4 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 se 46 36 10 2 0 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 se 51 33 17 5 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 se 48 34 19 2 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 se 50 30 16 2 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 se 50 34 16 4 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 se 52 35 15 2 0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 se 52 34 14 2 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 se 47 32 16 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 se 48 31 16 2 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 se 54 34 15 4 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0 0 se 52 41 15 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 se 55 42 14 2 0 1 1 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 se 50 32 12 2 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 se 55 35 13 2 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 se 44 30 13 2 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 0 se 51 34 15 2 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 se 50 35 13 3 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 1 se 45 23 13 3 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 se 44 32 13 2 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 se 50 35 16 6 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 se 51 38 19 4 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 se 48 30 14 3 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 se 51 38 16 2 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 se 46 32 14 2 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 se 53 37 15 2 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 se 50 33 14 2 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0

Full IRIS corrected setosa 49.1 34.1 14.6 2.44 versicol 59.3 27.7 42.6 13.2 verginic 65.8 29.7 54.9 20.2 se < 54 < ve < 62 < vi sl ve < 28 < vi < 31 < se sw se < 23 < ve < 48 < vi pl se < 8 < ve < 17 < vi pw Sepal Length. Sepal Width Pedal Length. Pedal Wth ve 70 32 47 14 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 ve 64 32 45 15 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 ve 69 31 49 15 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 ve 55 23 40 13 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 ve 65 28 46 15 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 ve 57 28 45 13 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 0 1 ve 63 33 47 16 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 ve 49 24 33 10 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 ve 66 29 46 13 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 ve 52 27 39 14 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 0 ve 50 20 35 10 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 ve 59 30 42 15 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 ve 60 22 40 10 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 ve 61 29 47 14 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 ve 56 29 36 13 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 ve 67 31 44 14 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 ve 56 30 45 15 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 ve 58 27 41 10 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0 ve 62 22 45 15 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 ve 56 25 39 11 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 ve 59 32 48 18 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 ve 61 28 40 13 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 ve 63 25 49 15 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 ve 61 28 47 12 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 0 0 ve 64 29 43 13 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 ve 66 30 44 14 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 ve 68 28 48 14 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 0 ve 67 30 50 17 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 ve 60 29 45 15 0 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 ve 57 26 35 10 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 ve 55 24 38 11 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 ve 55 24 37 10 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 ve 58 27 39 12 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 ve 60 27 51 16 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 ve 54 30 45 15 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 ve 60 34 45 16 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 ve 67 31 47 15 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 ve 63 23 44 13 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 ve 56 30 41 13 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1 ve 55 25 40 13 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 ve 55 26 44 12 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 ve 61 30 46 14 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 ve 58 26 40 12 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 ve 50 23 33 10 0 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 ve 56 27 42 13 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 ve 57 30 42 12 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 ve 57 29 42 13 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 ve 62 29 43 13 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 ve 51 25 30 11 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 ve 57 28 41 13 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 0 1

Full IRIS corrected setosa 49.1 34.1 14.6 2.44 versicol 59.3 27.7 42.6 13.2 verginic 65.8 29.7 54.9 20.2 se < 54 < ve < 62 < vi sl ve < 28 < vi < 31 < se sw se < 23 < ve < 48 < vi pl se < 8 < ve < 17 < vi pw 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1 viSL > 62= Already we can see, just from the red vi sepal length threshold we get most of the vi tuples. On the next slide we will check the blue pedal length threshold, then the green pedal width threshold. We will require a win in two out of the four to classify as virginica (vi). Sepal Length. Sepal Width Pedal Length. Pedal Wth vi 63 33 60 25 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 vi 58 27 51 19 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 vi 71 30 59 21 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 vi 63 29 56 18 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 vi 65 30 58 22 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 vi 76 30 66 21 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 vi 49 25 45 17 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 vi 73 29 63 18 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 vi 67 25 58 18 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 vi 72 36 61 25 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 vi 65 32 51 20 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 vi 64 27 53 19 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 vi 68 30 55 21 1 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 vi 57 25 50 20 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 vi 58 28 51 24 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 vi 64 32 53 23 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 vi 65 30 55 18 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 vi 77 38 67 22 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 vi 77 26 69 23 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 vi 60 22 50 15 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 vi 69 32 57 23 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 vi 56 28 49 20 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 vi 77 28 67 20 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 vi 63 27 49 18 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 vi 67 33 57 21 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 vi 72 32 60 18 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 vi 62 28 48 18 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 vi 61 30 49 18 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 vi 64 28 56 21 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 vi 72 30 58 16 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 vi 74 28 61 19 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 vi 79 38 64 20 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 vi 64 28 56 22 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 vi 63 28 51 15 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 vi 61 26 56 14 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 vi 77 30 61 23 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 vi 63 34 56 24 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 vi 64 31 55 18 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 vi 60 30 18 18 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 vi 69 31 54 21 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 vi 67 31 56 24 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0 vi 69 31 51 23 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 vi 68 32 59 23 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 vi 67 33 57 25 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 vi 67 30 52 23 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1 vi 63 25 50 19 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 vi 65 30 52 20 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 vi 62 34 54 23 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 vi 59 30 51 18 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 11

Full IRIS corrected setosa 49.1 34.1 14.6 2.44 versicol 59.3 27.7 42.6 13.2 verginic 65.8 29.7 54.9 20.2 se < 54 < ve < 62 < vi sl ve < 28 < vi < 31 < se sw se < 23 < ve < 48 < vi pl se < 8 < ve < 17 < vi pw viPL > 48= 0 1 1 0 0 0 0 Sepal Length. Sepal Width Pedal Length. Pedal Wth vi 63 33 60 25 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 vi 58 27 51 19 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 vi 71 30 59 21 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 vi 63 29 56 18 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 vi 65 30 58 22 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 vi 76 30 66 21 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 vi 49 25 45 17 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 vi 73 29 63 18 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 vi 67 25 58 18 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 vi 72 36 61 25 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 vi 65 32 51 20 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 vi 64 27 53 19 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 vi 68 30 55 21 1 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 vi 57 25 50 20 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 vi 58 28 51 24 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 vi 64 32 53 23 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 vi 65 30 55 18 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 vi 77 38 67 22 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 vi 77 26 69 23 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 vi 60 22 50 15 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 vi 69 32 57 23 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 vi 56 28 49 20 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 vi 77 28 67 20 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 vi 63 27 49 18 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 vi 67 33 57 21 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 vi 72 32 60 18 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 vi 62 28 48 18 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 vi 61 30 49 18 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 vi 64 28 56 21 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 vi 72 30 58 16 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 vi 74 28 61 19 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 vi 79 38 64 20 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 vi 64 28 56 22 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 vi 63 28 51 15 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 vi 61 26 56 14 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 vi 77 30 61 23 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 vi 63 34 56 24 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 vi 64 31 55 18 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 vi 60 30 18 18 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 vi 69 31 54 21 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 vi 67 31 56 24 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0 vi 69 31 51 23 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 vi 68 32 59 23 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 vi 67 33 57 25 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 vi 67 30 52 23 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1 vi 63 25 50 19 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 vi 65 30 52 20 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 vi 62 34 54 23 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 vi 59 30 51 18 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 1 11

Full IRIS corrected setosa 49.1 34.1 14.6 2.44 versicol 59.3 27.7 42.6 13.2 verginic 65.8 29.7 54.9 20.2 se < 54 < ve < 62 < vi sl ve < 28 < vi < 31 < se sw se < 23 < ve < 48 < vi pl se < 8 < ve < 17 < vi pw With the three mask pTrees for PW, PL and SL, we already get 35 of the 50 correctly classified. viPW > 17= 1 0 0 0 1 Sepal Length. Sepal Width Pedal Length. Pedal Wth vi 63 33 60 25 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 vi 58 27 51 19 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 vi 71 30 59 21 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 vi 63 29 56 18 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 vi 65 30 58 22 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 vi 76 30 66 21 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 vi 49 25 45 17 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 vi 73 29 63 18 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 vi 67 25 58 18 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 vi 72 36 61 25 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 vi 65 32 51 20 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 vi 64 27 53 19 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 vi 68 30 55 21 1 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 vi 57 25 50 20 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 vi 58 28 51 24 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 vi 64 32 53 23 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 vi 65 30 55 18 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 vi 77 38 67 22 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 vi 77 26 69 23 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 vi 60 22 50 15 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 vi 69 32 57 23 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 vi 56 28 49 20 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 vi 77 28 67 20 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 vi 63 27 49 18 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 vi 67 33 57 21 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 vi 72 32 60 18 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 vi 62 28 48 18 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 vi 61 30 49 18 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 vi 64 28 56 21 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 vi 72 30 58 16 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 vi 74 28 61 19 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 vi 79 38 64 20 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 vi 64 28 56 22 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 vi 63 28 51 15 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 vi 61 26 56 14 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 vi 77 30 61 23 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 vi 63 34 56 24 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 vi 64 31 55 18 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 vi 60 30 18 18 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 vi 69 31 54 21 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 vi 67 31 56 24 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0 vi 69 31 51 23 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 vi 68 32 59 23 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 vi 67 33 57 25 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 vi 67 30 52 23 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1 vi 63 25 50 19 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 vi 65 30 52 20 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 vi 62 34 54 23 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 vi 59 30 51 18 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 11 1 11 1 11

Full IRIS corrected setosa 49.1 34.1 14.6 2.44 versicol 59.3 27.7 42.6 13.2 verginic 65.8 29.7 54.9 20.2 se < 54 < ve < 62 < vi sl ve < 28 < vi < 31 < se sw se < 23 < ve < 48 < vi pl se < 8 < ve < 17 < vi pw Brown and not orange viSW > 28= 0 1 1 1 0 0 seSW > 31= 0 1 1 1 1 1 Sepal Length. Sepal Width Pedal Length. Pedal Wth vi 63 33 60 25 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 vi 58 27 51 19 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 vi 71 30 59 21 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 vi 63 29 56 18 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 vi 65 30 58 22 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 vi 76 30 66 21 1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 vi 49 25 45 17 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 vi 73 29 63 18 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 vi 67 25 58 18 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 vi 72 36 61 25 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 vi 65 32 51 20 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 vi 64 27 53 19 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 vi 68 30 55 21 1 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 vi 57 25 50 20 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 vi 58 28 51 24 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 vi 64 32 53 23 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 vi 65 30 55 18 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 vi 77 38 67 22 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 vi 77 26 69 23 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 vi 60 22 50 15 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 vi 69 32 57 23 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 vi 56 28 49 20 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 vi 77 28 67 20 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 vi 63 27 49 18 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 vi 67 33 57 21 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 vi 72 32 60 18 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 vi 62 28 48 18 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 vi 61 30 49 18 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 vi 64 28 56 21 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 vi 72 30 58 16 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 vi 74 28 61 19 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 vi 79 38 64 20 1 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 vi 64 28 56 22 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 vi 63 28 51 15 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 vi 61 26 56 14 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 vi 77 30 61 23 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 vi 63 34 56 24 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 vi 64 31 55 18 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 vi 60 30 18 18 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 vi 69 31 54 21 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 vi 67 31 56 24 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0 vi 69 31 51 23 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 vi 68 32 59 23 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 vi 67 33 57 25 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 vi 67 30 52 23 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1 vi 63 25 50 19 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 vi 65 30 52 20 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 vi 62 34 54 23 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 vi 59 30 51 18 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 10 00 1 11 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 01 11

Correctly classifies 39/50=78% of virginica for 50% threshold Full IRIS corrected setosa 49.1 34.1 14.6 2.44 versicol 59.3 27.7 42.6 13.2 verginic 65.8 29.7 54.9 20.2 se < 54 < ve < 62 < vi sl ve < 28 < vi < 31 < se sw se < 23 < ve < 48 < vi pl se < 8 < ve < 17 < vi pw SL PL PW SW 1 11 1 11 1 11 1 11 01 1 00 Correctly classifies 39/50=78% of virginica for 50% threshold Correctly classifies 35/50=70% of virginica for 75% threshold