Rapid detection of enterobacteriaceae producing extended spectrum beta-lactamases directly from positive blood cultures by matrix-assisted laser desorption.

Slides:



Advertisements
Similar presentations
Models for the organisation of hospital infection control and prevention programmes B. Gordts Clinical Microbiology and Infection Volume 11, Pages
Advertisements

F.M. MacKenzie, C.A. Miller, I.M. Gould 
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections  A.K.
Matrix-assisted laser-desorption/ionization BIOTYPER: experience in the routine of a University hospital  E. Bessède, M. Angla-gre, Y. Delagarde, S. Sep.
L. Boyanova  Clinical Microbiology and Infection 
R. Cantón, A. Novais, A. Valverde, E. Machado, L. Peixe, F. Baquero, T
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification  A. Bizzini, G. Greub 
Defining an extended-spectrum β-lactamase
Gut bacterial microbiota and obesity
Multiple ST clonal complexes, with a predominance of ST131, of Escherichia coli harbouring blaCTX-M-15 in a tertiary hospital in Tanzania  S.E. Mshana,
Evolution of extended-spectrum β-lactamases by mutation
Extended-spectrum and CMY-type b-lactamase-producing Escherichia coli in clinical samples and retail meat from Pittsburgh, USA and Seville, Spain  Y.
Defining an extended-spectrum β-lactamase
Evaluation of VITEK 2 for analysis of Enterobacteriaceae using the Advanced Expert System (AES) versus interpretive susceptibility guidelines used at.
Assessing the residual antibacterial activity of clinical materials disinfected with glutaraldehyde, o-phthalaldehyde, hydrogen peroxide or 2-bromo-2-nitro-1,3-
How to evaluate and predict the ecologic impact of antibiotics: the pharmaceutical industry view from research and development  R. Bax  Clinical Microbiology.
Non-antibiotic strategies for sepsis
Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review  M. Drancourt 
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: revolutionizing clinical laboratory diagnosis of mould infections  M. Gautier,
Impact of changes in CLSI and EUCAST breakpoints for susceptibility in bloodstream infections due to extended-spectrum β-lactamase-producing Escherichia.
Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass.
How to evaluate and predict the epidemiologic impact of antibiotic use in humans: the pharmacoepidemiologic approach  D. Guillemot  Clinical Microbiology.
A multicentre analysis of epidemiology of the nosocomial bloodstream infections in Japanese university hospitals  M. Nagao  Clinical Microbiology and.
Vector control: a cornerstone in the malaria elimination campaign
Evaluation of a diagnostic flow chart for detection and confirmation of extended spectrum β-lactamases (ESBL) in Enterobacteriaceae  S. Polsfuss, G.V.
New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia?
Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide  L. Drieux, F. Brossier, W. Sougakoff,
L.-T. Wu, S.-W. Hung, Y.-C. Chuang, H.-E. Chen, R.N. Jones, W.-L. Yu 
Prevalence of extended-spectrum β-lactamases in isolates of the Enterobacter cloacae complex from German hospitals  H. Hoffmann, E. Stürenburg, J. Heesemann,
F. Bittar, J.-M. Rolain  Clinical Microbiology and Infection 
Comparative assessment of inoculum effects on the antimicrobial activity of amoxycillin- clavulanate and piperacillin-tazobactam with extended-spectrum.
Effects of gentamicin monotherapy for the initial treatment of community-onset complicated non-obstructive acute pyelonephritis due to Enterobacteriaceae.
The occurrence of Legionella species other than Legionella pneumophila in clinical and environmental samples in Denmark identified by mip gene sequencing.
Development and clinical validation of a molecular diagnostic assay to detect CTX-M- type β-lactamases in Enterobacteriaceae  J.D.D. Pitout, N. Hamilton,
Control of infections due to extended-spectrum β-lactamase-producing organisms in hospitals and the community  R.E. Warren, G. Harvey, R. Carr, D. Ward,
C. Varela, A. Oliver, T.M. Coque, F. Baquero, R. Canton 
Four-year epidemiological study of extended-spectrum β-lactamase-producing Enterobacteriaceae in a French teaching hospital  L. Gibold, F. Robin, R.-N.
Automated categorization of methicillin-resistant Staphylococcus aureus clinical isolates into different clonal complexes by MALDI-TOF mass spectrometry 
A simple, robust and rapid approach to detect carbapenemases in Gram-negative isolates by MALDI-TOF mass spectrometry: validation with triple quadripole.
Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories  J. Hrabák, E. Chudáčkova, C.C. Papagiannitsis 
Risk factors for extended-spectrum β-lactamase-producing Escherichia coli urinary tract infection in the community in Denmark: a case–control study  M.
I. Faria-Ramos, M. J. Espinar, R. Rocha, J. Santos-Antunes, A. G
Faecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae is common 12 months after infection and is related to strain factors  E.
Impact of rapid microbial identification directly from positive blood cultures using matrix- assisted laser desorption/ionization time-of-flight mass spectrometry.
Blood culture-based diagnosis of bacteraemia: state of the art
Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for species identification of Acinetobacter strains isolated.
Long-term study of the frequency of Escherichia coli and Klebsiella pneumoniae isolates producing extended-spectrum β-lactamases  L. Romero, L. López,
Advantages and limitations of genomics in prokaryotic taxonomy
TEM-24 extended-spectrum β-lactamase-producing Enterobacter aerogenes: long-term clonal dissemination in French hospitals  J.-O. Galdbart, F. Lémann,
Pandemic lineages of extraintestinal pathogenic Escherichia coli
Jacques Sirot  Clinical Microbiology and Infection 
Colonization of residents and staff of a long-term-care facility and adjacent acute-care hospital geriatric unit by multiresistant bacteria  A. March,
Prevalence and diversity of extended-spectrum ß-lactamases in faecal Escherichia coli isolates from healthy humans in Spain  L. Vinué, Y. Sáenz, S. Martínez,
R. Cantón, A. Novais, A. Valverde, E. Machado, L. Peixe, F. Baquero, T
Transferable plasmid mediating resistance to multiple antimicrobial agents in Klebsiella pneumoniae isolates in Greece  I. Galani, E. Xirouchaki, K. Kanellakopoulou,
I. Bitar, A. Piazza  Clinical Microbiology and Infection 
Mechanisms of reduced susceptibility to amoxycillin-clavulanic acid in Escherichia coli strains from the health region of Tortosa (Catalonia, Spain) 
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and PCR- based rapid diagnosis of Staphylococcus aureus bacteraemia  O. Clerc,
Molecular epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumoniae strains in a university hospital in Tunis, Tunisia, 1999–2005 
Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and accurate identification of Pseudallescheria/ Scedosporium species 
Predominance of SHV-5 β-lactamase in enteric bacteria causing community-acquired urinary tract infections in Bosnia and Herzegovina  S. Uzunovic-Kamberovic,
Modelling during an emergency: the 2009 H1N1 influenza pandemic
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials  W. Moussaoui,
J.L. Balcázar  Clinical Microbiology and Infection 
G.C. Schito  Clinical Microbiology and Infection 
Identification of Leishmania at the species level with matrix-assisted laser desorption ionization time-of-flight mass spectrometry  C. Cassagne, F. Pratlong,
G. Kahlmeter  Clinical Microbiology and Infection 
Impact of antibiotic restrictions: the patient's perspective
The future of diagnostic bacteriology
Multi-centre evaluation of a phenotypic extended spectrum β-lactamase detection guideline in the routine setting  T.N. Platteel, J.W. Cohen Stuart, A.J.
Presentation transcript:

Rapid detection of enterobacteriaceae producing extended spectrum beta-lactamases directly from positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry  M. Oviaño, B. Fernández, A. Fernández, M.J. Barba, C. Mouriño, G. Bou  Clinical Microbiology and Infection  Volume 20, Issue 11, Pages 1146-1157 (November 2014) DOI: 10.1111/1469-0691.12729 Copyright © 2014 European Society of Clinical Infectious Diseases Terms and Conditions

FIG. 1 (a) Mass spectra of cefotaxime at 60 min (A), 90 min (B), 120 min (C) and 180 min (D) and ceftazidime at 60 min (E), 90 min (F), 120 min (G) and 180 min (H) after exposure to the bacterial lysate of one isogenic Escherichia coli control strain expressing blaCTX-M-32. (1b) Mass spectra of cefotaxime at 60 min (A), 90 min (B), 120 min (C) and 180 min (D) and ceftazidime at 60 min (E), 90 min (F), 120 min (G) and 180 min (H) after exposure to the bacterial lysate of one isogenic E. coli control strain expressing blaCMY-2. a Indicates the hydrolized peaks of the antibiotic. b→Indicates the antibiotic mass peaks (no hydrolyzed form). Clinical Microbiology and Infection 2014 20, 1146-1157DOI: (10.1111/1469-0691.12729) Copyright © 2014 European Society of Clinical Infectious Diseases Terms and Conditions

FIG. 1 (a) Mass spectra of cefotaxime at 60 min (A), 90 min (B), 120 min (C) and 180 min (D) and ceftazidime at 60 min (E), 90 min (F), 120 min (G) and 180 min (H) after exposure to the bacterial lysate of one isogenic Escherichia coli control strain expressing blaCTX-M-32. (1b) Mass spectra of cefotaxime at 60 min (A), 90 min (B), 120 min (C) and 180 min (D) and ceftazidime at 60 min (E), 90 min (F), 120 min (G) and 180 min (H) after exposure to the bacterial lysate of one isogenic E. coli control strain expressing blaCMY-2. a Indicates the hydrolized peaks of the antibiotic. b→Indicates the antibiotic mass peaks (no hydrolyzed form). Clinical Microbiology and Infection 2014 20, 1146-1157DOI: (10.1111/1469-0691.12729) Copyright © 2014 European Society of Clinical Infectious Diseases Terms and Conditions

FIG. 2 (a) Mass spectra of cefotaxime (A), cefotaxime plus clavulanic acid (B), ceftazidime (C) and ceftazidime plus clavulanic acid (D) after exposure to the bacterial lysate at the time when the hydrolysis is higher. β-lactamase-type and time studied is indicated in the top right corner. β-lactamases belong to control strains are as follows: TEM-1 (non-ESBL), SHV-12 (ESBL), TEM-29 (ESBL with higher activity toward ceftazidime), CTX-M-14, -15, and -32 (ESBL), FOX-4, CMY-2, DHA-1, -6 and -7 (plasmidic AmpC-type enzymes) a Indicates the hydrolized peaks of the antibiotic. b→Indicates the antibiotic mass peaks (no hydrolyzed form). Clinical Microbiology and Infection 2014 20, 1146-1157DOI: (10.1111/1469-0691.12729) Copyright © 2014 European Society of Clinical Infectious Diseases Terms and Conditions

FIG. 2 (a) Mass spectra of cefotaxime (A), cefotaxime plus clavulanic acid (B), ceftazidime (C) and ceftazidime plus clavulanic acid (D) after exposure to the bacterial lysate at the time when the hydrolysis is higher. β-lactamase-type and time studied is indicated in the top right corner. β-lactamases belong to control strains are as follows: TEM-1 (non-ESBL), SHV-12 (ESBL), TEM-29 (ESBL with higher activity toward ceftazidime), CTX-M-14, -15, and -32 (ESBL), FOX-4, CMY-2, DHA-1, -6 and -7 (plasmidic AmpC-type enzymes) a Indicates the hydrolized peaks of the antibiotic. b→Indicates the antibiotic mass peaks (no hydrolyzed form). Clinical Microbiology and Infection 2014 20, 1146-1157DOI: (10.1111/1469-0691.12729) Copyright © 2014 European Society of Clinical Infectious Diseases Terms and Conditions

FIG. 2 (a) Mass spectra of cefotaxime (A), cefotaxime plus clavulanic acid (B), ceftazidime (C) and ceftazidime plus clavulanic acid (D) after exposure to the bacterial lysate at the time when the hydrolysis is higher. β-lactamase-type and time studied is indicated in the top right corner. β-lactamases belong to control strains are as follows: TEM-1 (non-ESBL), SHV-12 (ESBL), TEM-29 (ESBL with higher activity toward ceftazidime), CTX-M-14, -15, and -32 (ESBL), FOX-4, CMY-2, DHA-1, -6 and -7 (plasmidic AmpC-type enzymes) a Indicates the hydrolized peaks of the antibiotic. b→Indicates the antibiotic mass peaks (no hydrolyzed form). Clinical Microbiology and Infection 2014 20, 1146-1157DOI: (10.1111/1469-0691.12729) Copyright © 2014 European Society of Clinical Infectious Diseases Terms and Conditions

FIG. 2 (a) Mass spectra of cefotaxime (A), cefotaxime plus clavulanic acid (B), ceftazidime (C) and ceftazidime plus clavulanic acid (D) after exposure to the bacterial lysate at the time when the hydrolysis is higher. β-lactamase-type and time studied is indicated in the top right corner. β-lactamases belong to control strains are as follows: TEM-1 (non-ESBL), SHV-12 (ESBL), TEM-29 (ESBL with higher activity toward ceftazidime), CTX-M-14, -15, and -32 (ESBL), FOX-4, CMY-2, DHA-1, -6 and -7 (plasmidic AmpC-type enzymes) a Indicates the hydrolized peaks of the antibiotic. b→Indicates the antibiotic mass peaks (no hydrolyzed form). Clinical Microbiology and Infection 2014 20, 1146-1157DOI: (10.1111/1469-0691.12729) Copyright © 2014 European Society of Clinical Infectious Diseases Terms and Conditions