Analysis of Simply Supported Composite Plates with Uniform Pressure using ANSYS and Maple Second Progress Report 11/28/2013.

Slides:



Advertisements
Similar presentations
Shearing Stresses in Beams and Thin-Walled Members
Advertisements

INTRODUCTION TO MECHANICS FOR SOLIDS AND STRUCTURES
AYP Changes for 2007 K-20 Videoconference June 11, 2007 Presented by: JoLynn Berge OSPI Federal Policy Coordinator.
HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010.
Solve Multi-step Equations

Structural scales and types of analysis in composite materials
Fibre Volume Fraction and Laminate Thickness
Aerospace Structures and Materials: Lamination Theory and Applications
Aerospace Structures and Materials Lecture 22: Laminate Design.
Constituent Materials 1 Laminate Plate Theory $100 $200 $300 $400 $500 Potpourri and Processing Composite Laminates $400 $500 Constituent Materials.
Mechanics of Composite Materials
Introduction Composites have found their place in aerospace and in the sporting goods industry, where they have displaced many metal applications. The.
Fracture Mechanics of Delamination Buckling in Laminated Composites Kenneth Hunziker 4/28/08.
Large Deformation Non-Linear Response of Composite Structures C.C. Chamis NASA Glenn Research Center Cleveland, OH L. Minnetyan Clarkson University Potsdam,
1 Challenge the future Subtitless On Lightweight Design of Submarine Pressure Hulls.
Chap.8 Mechanical Behavior of Composite
Laminated plates.
Failure of laminated composites Progressive failure is needed to predict ultimate failure We will limit ourselves to first ply failure.
Analysis of Simply Supported Aluminum and Composite Plates with Uniform Loading to Determine Equivalent Plate Ply Stack-Up Second Progress Report 10/28/2013.
Genetic Algorithms Genetic algorithms imitate natural optimization process, natural selection in evolution. Developed by John Holland at the University.
Teaching Modules for Steel Instruction
Sample Problem 4.2 SOLUTION:
Design of Structural Elements
CHAPTER 4 MACROMECHANICAL ANALYSIS OF LAMINATES
Adding Up In Chunks.
11 Energy Methods.
CH 8 Right Triangles. Geometric Mean of 2 #’s If you are given two numbers a and b you can find the geometric mean. a # = # b 3 x = x 27 Ex ) 3 and 27.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 10: Elasticity and Oscillations.
CHAPTER OBJECTIVES Discuss the behavior of columns.
Two Special Right Triangles
FE analysis with shell and axisymmetric elements E. Tarallo, G. Mastinu POLITECNICO DI MILANO, Dipartimento di Meccanica.
Composites Design and Analysis Stress-Strain Relationship Prof Zaffar M. Khan Institute of Space Technology Islamabad.
Chapter 9 Extension, Torsion and Flexure of Elastic Cylinders
Finite Element Simulation of Woven Fabric Composites B.H. Le Page *, F.J. Guild +, S.L. Ogin * and P.A. Smith * * School of Engineering, University of.
Beams and Frames.
Some Ideas Behind Finite Element Analysis
Copyright 2001, J.E. Akin. All rights reserved. CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: –Stress Analysis.
M. A. Farjoo.  The stiffness can be defined by appropriate stress – strain relations.  The components of any engineering constant can be expressed in.
ECIV 520 A Structural Analysis II
Bars and Beams FEM Linear Static Analysis
1 CM 197 Mechanics of Materials Chap 10: Strength of Materials Strains Professor Joe Greene CSU, CHICO Reference: Statics and Strength of Materials, 2.
CM 197 Mechanics of Materials Chap 14: Stresses in Beams
Classical Laminated Plate Theory
Beams: Pure Bending ( ) MAE 314 – Solid Mechanics Yun Jing Beams: Pure Bending.
MACROMECHANICS Ahmet Erkliğ.
Beams Beams: Comparison with trusses, plates t
10 Pure Bending.
ME 520 Fundamentals of Finite Element Analysis
CTC / MTC 222 Strength of Materials Final Review.
FINITE ELEMENT ANALYSIS CONVERSION FACTORS FOR NATURAL VIBRATIONS OF BEAMS Austin Cosby and Ernesto Gutierrez-Miravete Rensselaer at Hartford.
Poisson’s Ratio For a slender bar subjected to axial loading:
Strength of Materials Outline Overview AXIALLY LOADED MEMBERS THIN-WALLED CYLINDER GENERAL STATE OF STRESS PLANE STRESS + MOHR’S CIRCLE PLANE STRAIN +
Structural Design for Cold Region Engineering Lecture 14 Thory of Plates Shunji Kanie.
Copyright Kaplan AEC Education, 2005 Mechanics of Materials Outline Overview AXIALLY LOADED MEMBERS, p. 262 Modulus of Elasticity Poisson’s Ratio Thermal.
Master’s Project Rigels Bejleri. 10/10/14 Decided to use properties from Kollar and Springer Book (AS/3501) It has properties for fibers, matrix, and.
CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: –Stress Analysis –Thermal Analysis –Structural Dynamics –Computational.
EGM 5653 Advanced Mechanics of Materials
APPROACH FOR THE SOLUTION OF A SIMPLIFIED REISSNER THEORY OF ELASTIC PLATES - APPLICATION IN THE AUTOMOTIVE INDUSTRY- ICSAT
NAFEMS. The International Association for the Engineering Analysis Community FETraining - Your Partner in FEA Training and Consultancy
4. Local strength calculation
Shear in Straight Members Shear Formula Shear Stresses in Beams
Poisson’s Ratio For a slender bar subjected to axial loading:
Pure Bending.
Outer Shell (fuel grain housing) Inner Shell (NOS/rocket housing)
BDA30303 Solid Mechanics II.
Poisson’s Ratio For a slender bar subjected to axial loading:
Graphical design for specified laminate strain limits
Poisson’s Ratio For a slender bar subjected to axial loading:
Laminates of Orthotropic plies
Presentation transcript:

Analysis of Simply Supported Composite Plates with Uniform Pressure using ANSYS and Maple Second Progress Report 11/28/2013

Thin Plate Theory Three Assumptions for Thin Plate Theory There is no deformation in the middle plane of the plate. This plane remains neutral during bending. Points of the plate lying initially on a normal-to-the- middle plane of the plate remain on the normal-to- the-middle surface of the plate after bending The normal stress in the direction transverse to the plate can be disregarded

Material Properties and Governing Equations Modulus of Elasticity (E) 10 x 10 6 psi Thickness (h)0.250 inch Poisson's Ratio (ν)0.3 Edge Length (a)24 inch Applied Surface Pressure (q) 10 psi w max = α*q*a 4 /D D = E*h 3 /12*(1-ν 2 )

ANSYS Model with Mesh Side 2 Side 1 Side 4 Side 3 Origin Due to Symmetry only a quarter of the plate needs to be modeled The mesh size has an edge length of 0.75 Side 1 and Side 2 are constrained against translation in the z-direction. Side 2 and Side 3 is constrained against rotating in the x-direction Side 1 and Side 4 is constrained against rotation in the y-direction The origin is constrained against motion in the x- and y-directions A pressure of 10 psi is applied to the area Side 2 Origin Side 4 Side 1 Side 3

Results of Aluminum Plate From governing equations: wmax = From ANSYS wmax = % Error = 0.033%

Material Properties of Composite Laminate Edge Length (a)24 inch Ply Thickness0.040 inch E1E1 2.25e7 psi E2E2 1.75e6 psi E3E3 ν ν ν G e5 psi G e5 psi G e5 psi Applied Surface Pressure (q) 10 psi

Governing Equations Analysis and Performance of Fiber Composites: Agarwal & Nroutman ABD Matrix:

Governing Equations (cont.) Mechanics of Composite: Jones For Cross-ply Laminates the [D] matrix simplifies and the governing equation reduces to:

Governing Equations (cont.) For symmetric angle laminates, the ABD matrix is fully defined. The boundary conditions for a symmetric angle laminate are:

Governing Equations (cont.) Using the Rayleigh-Ritz Method based on the total minimum potential energy will provide an approximation of the deflection of the plate

ANSYS Model with Mesh Side 2 Side 1 Side 4 Side 3 Origin Due to Symmetry only a quarter of the plate needs to be modeled The mesh size has an edge length of 0.75 Side 1 and Side 2 are constrained against translation in the z-direction. Side 2 and Side 3 is constrained against rotating in the x-direction Side 1 and Side 4 is constrained against rotation in the y-direction The origin is constrained against motion in the x- and y-directions A pressure of 10 psi is applied to the area Side 2 Origin Side 4 Side 1 Side 3

Results of Composite Plate Composite Plate Results [ ]s Laminate From governing equations: wmax = From ANSYS wmax = % Error = -0.5%

Results of Composite Plate (ANSYS) Laminate Stack-upDeflection - ANSYS (in)Deflection - Maple (in)Percent Error [0 90] s [ ] s [ ] s [ ] s [+/-30 0] s [+/-45 0] s [+/-60 0] s [+/ /-30 0] s [+/ /-45 0] s [+/ /-60 0] s [+/-30]s [+/45]s [+/-60]s [+/-30 +/-30]s [+/-45 +/-45]s [+/-60 +/-60]s [+/-30 +/-30 +/-30]s [+/-45 +/-45 +/-45]s [+/-60 +/-60 +/-60]s

Failure Criterion

Failure Criterion (cont.) The Tsai-Wu Failure Criterion is based on the following equations:

Failure Criterion (cont.) Maximum Stress Criterion for bi-axial loading of composite plate:

Failure Criterion (cont.) Tsai-Wu Criterion for bi-axial loading of composite plate:

Conclusions The composite plate that had the smallest deflection was the 12 ply [+/-45 +/-45 +/-45]s laminate. The thinnest plate that had the smallest deflection was the 8 ply [+/-30 +/-30]s and [+/-60 +/-60]s laminates The larger percent error for the results occurred for the symmetric angle ply trials. This is because of the nature of the Rayleigh-Ritz Method. When the composite has symmetric angle plies there is a full [D] matrix. The full [D] matrix does not allow for a separation of variables method to be used to calculate the deflection because not all of the boundary conditions can be satisfied. The Rayleigh-Ritz Method approximates the deflection by using a Fourier expansion for the total potential energy. The calculated percent error seems to be within reason for the analysis that was done for this project. The Rayleigh-Ritz Method does not provide an exact solution when compared to the method for a specially orthotropic plate. The most reasonable plate arrangement that would be suitable for replacing the aluminum plate is the 8 ply orientations of [+/-30 +/-30]s, [+/-45 +/-45]s, [+/-60 +/-60]s. These three ply combinations can withstand a significant stress in the 1-direction, 2-direction, and 12-direction (shear) in comparison to other composite plates. These 8 ply plates will also be marginally thicker than the 0.25" aluminum plate, but provide a significant decrease in overall weight.