Studies of impurity migration in TEXTOR by local tracer injection

Slides:



Advertisements
Similar presentations
EU Plasma-Wall Interaction TF – Meeting Frascati SEWG Erosion & Transport S. Brezinsek Institut für Energieforschung –Plasmaphysik.
Advertisements

Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
SEWG Meeting HIGH-Z, Ljubljana, October 2009 I. Tungsten distribution on limiters after WF 6 injection in TEXTOR II. SEM and EDX of Melted Tungsten Rods.
ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
K. Krieger, SEWG Meeting on Material Migration and ITER Material Mix, JET, Max-Planck-Institut für Plasmaphysik Carbon local transport and redeposition.
EU Plasma-Wall Interaction TF – Meeting FZJ SEWG Chemical Erosion S. Brezinsek TEC 1 Report of the Special Expert Working Group on Chemical.
Tungsten distribution on limiters after WF 6 injection in TEXTOR M. Rubel, D. Ivanova Alfv é n Laboratory, Royal Institute of Technology, Association EURATOM.
C. Björkas, K. Vörtler and K. Nordlund Department of Physics, University of Helsinki Joint TFE-SEWG - Material Migration and Material Mixing meeting MD.
1. Qualifying carbon as PFC Erosion (see report S. Brezinsek ) along plasma wetted areas, effect of substrate Local C migration to gaps Fuel retention.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
PWI questions of ITER review working groups WG1 and WG8 : Materials Introduction EU PWI TF V. Philipps, EU PWI TF meeting, Oct 2007, Madrid V. Philipps,
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger Max-Planck-Institut.
Trilateral Euregio Cluster A.Kreter, V.Philipps et al "Retention in W, Mo and graphite samples simultaneously exposed to SOL plasma in TEXTOR" Assoziation.
TEC Trilateral Euregio Cluster Institut für PlasmaphysikAssoziation EURATOM-Forschungszentrum Jülich IEA Large Tokamak IA Workshop on Edge Transport in.
Plasma-induced Sputtering & Heating of Titan’s Atmosphere R. E. Johnson & O.J. Tucker Goal Understand role of the plasma in the evolution of Titan’s atmosphere.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
Material Erosion and Redeposition during the JET MkIIGB-SRP Divertor Campaign A. Kirschner, V. Philipps, M. Balden, X. Bonnin, S. Brezinsek, J.P. Coad,
Spectroscopy of hydrocarbon in low temperature plasmas : Results from JT-60U T. Nakano J apan A tomic E nergy A gency, Ibaraki, Japan. 6-9/11/2006 ITPA.
1 ITPA - DSOL - TorontoS. Brezinsek TEC Hydrocarbon spectroscopy on EU tokamaks S. Brezinsek on behalf of the EU task force for Plasma-Wall Interaction.
Member of the Helmholtz Association Status of the JULE-PSI project B. Unterberg, S. Kraus, A. Kreter, L. Scheibl and B. Schweer Institute for Energy and.
Numerical investigations of a cylindrical Hall thruster K. Matyash, R. Schneider, O. Kalentev Greifswald University, Greifswald, D-17487, Germany Y. Raitses,
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
L.B. Begrambekov Plasma Physics Department, Moscow Engineering and Physics Institute, Moscow, Russia Peculiarities, Sources and Driving Forces of.
Iain D. Boyd University of Michigan Modeling of Ion Sputtering and Product Transport.
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Aspect Ratio Dependent Twisting and Mask Effects During Plasma Etching of SiO2 in Fluorocarbon Gas Mixture* Mingmei Wang1 and Mark J. Kushner2 1Iowa State.
Trilateral Euregio Cluster Simultaneous observation of CD and C 2 in the near UV region in the JET divertor spectral window for the observation of CD and.
Member of the Helmholtz Association OS2010| Institute of Energy Research–Plasma Physics | Association EURATOM – FZJ Spectroscopy on laser released particles.
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
Plasma Dynamics Lab HIBP E ~ 0 V/m in Locked Discharges Average potential ~ 580 V  ~ V less than in standard rotating plasmas Drop in potential.
Challenges in edge modeling IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D Greifswald, Germany Outline: 1. Motivation 2.
R. P. Doerner, 2 nd PMIF Meeting, Juelich, Sept , 2011 Plasma interactions with Be surfaces R. P. Doerner, D. Nishijima, T. Schwarz-Selinger and.
TEC Trilateral Euregio Cluster 1 S. Brezinsek Spectroscopic determination of carbon erosion yields and the composition of chemically eroded molecular carbon.
VDU/LEI project in FUSION: background, goals, methods and expected results (PhD student Birutė Bobrovaitė, D r. Liudas Pranevičius)
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
Effects of tungsten surface condition on carbon deposition
Use of the focusing multi-slit ion optical system at the diagnostic injector RUDI A.Listopad 1, J.Coenen 2, V.Davydenko 1, A.Ivanov 1, V.Mishagin 1, V.Savkin.
Edge-SOL Plasma Transport Simulation for the KSTAR
Gas inlet position References Experiment 1) W sputtering experiment Aim: study of W erosion for different plasma conditions by aim of spectroscopy reference.
SUMMARYSUMMARY  Ion bombardment control,  Thermal management,  No Defects (pits or pillars) formation,  Profile control  Plasma repeatability  Plasma.
ITPA May 2007 © Matej Mayer Carbon Erosion and Transport in ASDEX Upgrade M. Mayer 1, V. Rohde 1, J.L. Chen 1, X. Gong 1, J. Likonen 3, S. Lindig 1, G.
1 Deuterium retention and release in tungsten co- deposited layers G. De Temmerman a,b, and R.P. Doerner a a Center for Energy Research, University of.
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
ERO modelling of Be erosion and light emission at JET ILW D.Borodin 1, M.Stamp, A.Kirschner 1, C.Björkas 1,2, S.Brezinsek 1, J.Miettunen 3, D.Matveev 1,
Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Recent state and progress in negative ion modeling by means ONIX code Mochalskyy Serhiy 1, Dirk.
ERO code development A. Kirschner M. Airila, D. Borodin, S. Droste, C. Niehoff  The ERO code  ERO code management  Modelling of CH 4 puffing in ASDEX.
Overview of recent work on carbon erosion, migration and long-term fuel retention in the EU-fusion programme and conclusions for ITER V. Philipps a Institute.
Consequences of Implanting and Surface Mixing During Si and SiO 2 Plasma Etching* Mingmei Wang 1 and Mark J. Kushner 2 1 Iowa State University, Ames, IA.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
Erosion and Deposition in Tokamaks Christian Schulz Institut für Energieforschung - Plasmaphysik Assoziation EURATOM- Forschungszentrum Jülich Trilateral.
Sputtering. Why? Thin layer deposition How? Bombarding a surface with ions which knocks out molecules from a target which in turn will redeposit onto.
Member of the Helmholtz Association Fuel Retention and Erosion of Metallic Plasma-Facing Materials under the Influence of Plasma Impurities A. Kreter 1,
Dominik Schega (1), S.S.Abdullaev (1), M.Clever (1), K.H.Finken (1), M.Jakubowski (2), Y.Kikuchi (3), M.Lehnen (1), O.Schmitz (1), G.Sewell (4), H.Stoschus.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
Mechanisms for losses during Edge Localised modes (ELMs)
Temperature Measurements of Limiter Surfaces at High Heat Flux in the HT-7 Tokamak H. Lin, X.Z. Gong, J. Huang, J.Liu, B. Shi, X.D. Zhang, B.N. Wan,
Generation of Toroidal Rotation by Gas Puffing
Data from IPP Garching W. Eckstein.
Influence of energetic ions on neoclassical tearing modes
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
Mikhail Z. Tokar and Mikhail Koltunov
Multiscale modeling of hydrogen isotope transport in porous graphite
Quasi-steady-state conditions in JET-ILW:
Model validation on EAST and DIII-D experiments highlight the roles of the Low-Z background impurities and the sheath potential in determining high-Z materials.
V. Rozhansky1, E. Kaveeva1, I. Veselova1, S. Voskoboynikov1, D
Presentation transcript:

Studies of impurity migration in TEXTOR by local tracer injection A. Kirschnera, P. Wienholda, D. Borodina, C. Björkasa,b, O. Van Hoeyc, D. Matveeva,c, S. Brezinseka, A. Kretera, M. Laengnera, K. Ohyad, V. Philippsa, A. Pospieszczyka, U. Samma, B. Schweera, and TEXTOR teama aInstitut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich, Assoziation EURATOM-FZJ, Trilateral Euregio Cluster, 52425 Jülich, Germany, bDepartment of Physics, University of Helsinki, Finland, cDepartment of Applied Physics, Ghent University, B-9000 Ghent, Belgium, dInstitute of Technology and Science, The University of Tokushima, Japan. Motivation ERO modelling results ● Former tracer injection experiments in TEXTOR lead to very small local deposition efficiencies. According modelling needs assumption of enhanced re-erosion (factor fEnh) of re-deposits to match. ● Possibly enhanced re-erosion of re-deposits: determines resulting net-deposition and thus important for wall life time. ● Study the influence of flux and energy of depositing tracer species on resulting deposition efficiency ⇒ involved mechanisms? Modelled 13C deposition efficiencies RI=0.1, RN=1 fEnh=5, RN=1 The 3D Monte Carlo code ERO CH4 Cx+,CHy0,+ re-eroded/ reflected particles background - plasma surface (substrate C, CR, Be) surface plasma-wall-interaction: physical sputtering/ reflection chemical erosion (CD4, BeD) deposition from background redeposition of eroded species impurity transport: ionisation, dissociation friction, thermal force Lorentz-force cross field diffusion ● Assuming reflection for hydrocarbons according to MD (RI=0.1, RN=1) - to simulate observed 13C deposition efficiency: fEnh~35 for reference case, fEnh=10-15 for low injection case ● Assuming fEnh=5 for re-erosion and RN=1 - to simulate observed 13C deposition efficiency: RI=0.8-0.9 for reference case, RI=0.6-0.7 for low injection case Modelled and simulated profiles of 13C deposition Reference Case: Low Injection Case: 13CH4 tracer experiments Experimental set-up: Test limiter after exposure: horizontal observation vertical observation toroidal limiter (46cm) limiter lock test limiter Reference: 0.3% polished C surface ● Reference case: RI>~0.9 needed to reproduce measured profile ● Low injection case: profile shape reproduced also for smaller RI Low injection rate : 0.71% Conclusions Erosion: Y Re-erosion: fEnh×Y re-deposit D+ substrate RI=0.1, RN=1 fEnh in ERO Reference 35 Low injection 10-15 Biased test limiter 5-10 polished C surface 13CH4 injection rate Limiter tip position Reference ~1⋅1019/s 46cm Low injection ~1⋅1018/s 46.2cm Biased test limiter (300V) 47cm Biased test limiter: 1.7% ● Measured 13C deposition efficiency increases with impact energy and reduced flux of depositing species ● “Standard” assumptions in ERO lead to large 13C deposition efficiencies (55% for reference, 34% for low injection, 42% for biased limiter case) ● ERO needs enhanced re-erosion and/or increased ion reflection – enhancement smallest for biased limiter. FEnh = F(Ein, Gin) polished C surface Deposition efficiency: #deposited 13C on test limiter #injected 13CH4 atoms