Team Dr Richard Ménard (P.I.) (1) Dr Simon Chabrillat (3) Prof Jack McConnell (4) Dr Pierre Gauthier (1) Dr Dominique Fonteyn (3) Dr Jacek Kaminski (4)

Slides:



Advertisements
Similar presentations
1 The GEMS production systems and retrospective reanalysis Adrian Simmons.
Advertisements

Martin G. Schultz, MPI Meteorology, Hamburg GEMS proposal preparation meeting, Reading, Dec 2003 GEMS RG Global reactive gases monitoring and forecast.
Imposed ozone calculations Qualitatively same behaviour in all models (which qualitiatively agrees with the observations). Significant quantitative differences.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Climate-Chemistry Interactions - User Requirements Martin Dameris DLR-Institut für.
Institut für Physik der Atmosphäre Ensemble Climate-Chemistry simulations for the past 40 years Volker Grewe and the DLR/MPI Team Institut für Physik der.
A Shared Atmosphere-Ocean Dynamical Core: First Validation (Semi-Implicit Semi-Lagrangian) Pierre Pellerin(2), François Roy(1,3), Claude Girard(2), François.
Gergely Bölöni, Roger Randriamampinanina, Regina Szoták, Gabriella Csima: Assimilation of ATOVS and AMDAR data in the ALADIN 3d-var system 1 _____________________________________________________________________________________.
Ozone assimilation to improve UV-index and AQHI regional forecast at Environment Canada J. de Grandpré, Y. Rochon and R. Ménard Contributors: ARQI (C.
A CASE STUDY OF A REMARKABLE TROPOPAUSE FOLDING EVENT OVER EASTERN NORTH AMERICA ON MARCH A.Robichaud 1, J. DeGrandpré 1, S.Chabrillat 3, C.
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
Henk Eskes, William Lahoz, ESTEC, 20 Jan 2004 The role of data assimilation in atmospheric composition monitoring and forecasting Henk Eskes, William Lahoz.
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE FOR SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
STRATOSPHERIC OZONE DISTRIBUTION Marion Marchand CNRS-UPMC-IPSL.
Data assimilation for validation of climate modeling systems Pierre Gauthier Department of Earth and Atmospheric Sciences Université du Québec à Montréal.
The Stratospheric Chemistry and The Ozone Layer
Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
Institute for Climate and Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT 3D SLIMCAT Studies of Arctic Ozone Loss Wuhu Feng Acknowledgments: Martyn.
Using global models and chemical observations to diagnose eddy diffusion.
Data assimilation of trace gases in a regional chemical transport model: the impact on model forecasts E. Emili 1, O. Pannekoucke 1,2, E. Jaumouillé 2,
Bay Area Earth Science Institute (BAESI)
Introduction. A major focus of SCOUT-O3 is the tropics and a key issue here is testing how well existing global 3D models perform in this region. This.
Predictability study using the Environment Canada Chemical Data Assimilation System Jean de Grandpré Yves J. Rochon Richard Ménard Air Quality Research.
Page 1 – July 3, 2015 Assimilation of surface chemical species observations into the Canadian GEM-MACH model using optimal interpolation Alain Robichaud,
CHAPMAN MECHANISM FOR STRATOSPHERIC OZONE (1930) O O 3 O2O2 slow fast Odd oxygen family [O x ] = [O 3 ] + [O] R2 R3 R4 R1.
"The Antarctic Ozone Hole"
QUESTIONS Based on the major source of OH described last class where do you expect OH formation to be high? 2. The  Chapman mechanism includes a fifth.
Stratospheric Ozone (con’t): Production, Destruction, & Trends Antarctic Ozone Hole: Sept. 12, 2012.
A NICE PLACE 1 Chemical Modelling & Data Assimilation D. Fonteyn, S. Bonjean, S. Chabrillat, F. Daerden and Q. Errera Belgisch Instituut voor Ruimte –
Using GPS data to study the tropical tropopause Bill Randel National Center for Atmospheric Research Boulder, Colorado “You can observe a lot by just watching”
Chemical Data Assimilation at the Meteorological Service of Canada Richard Ménard, Alain Robichaud Paul-Antoine Michelangelli, Pierre Gauthier, Yan Yang,
QUESTIONS 1.Based on the major source of OH described last class where do you expect OH formation to be high? 2.Why don’t reactions of hydrocarbons deplete.
Slide 1 Retrospective analysis of ozone at ECMWF Rossana Dragani ECMWF Acknowledgements to: D. Tan, A. Inness, E. Hólm, and D. Dee R. Dragani, SPARC/IOC/IGACO,
« Data assimilation in isentropic coordinates » Which Accuracy can be achieved using an high resolution transport model ? F. FIERLI (1,2), A. HAUCHECORNE.
Data assimilation and observing systems strategies Pierre Gauthier Data Assimilation and Satellite Meteorology Division Meteorological Service of Canada.
Assimilating chemical compound with a regional chemical model Chu-Chun Chang 1, Shu-Chih Yang 1, Mao-Chang Liang 2, ShuWei Hsu 1, Yu-Heng Tseng 3 and Ji-Sung.
Gloream workshop, Paris 2006 Setting of an experimental forecast system for air quality at ECMWF in the framework of the GEMS project : implementation.
Tbilisi, Ketevan Kasradze Supervisor: PD Dr. Hendrik Elbern Rhenish Institute for Environmental Research.
1 JRA-55 the Japanese 55-year reanalysis project - status and plan - Climate Prediction Division Japan Meteorological Agency.
Wildland Fire Impacts on Surface Ozone Concentrations Literature Review of the Science State-of-Art Ned Nikolov, Ph.D. Rocky Mountain Center USDA FS Rocky.
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre H 2 O in models and observations Coupling of dynamics and atmospheric chemistry.
Recent Trend of Stratospheric Water Vapor and Its Impacts Steve Rieck, Ning Shen, Gill-Ran Jeong EAS 6410 Team Project Apr
Introduction of temperature observation of radio-sonde in place of geopotential height to the global three dimensional variational data assimilation system.
A modelling study on trends and variability of the tropospheric chemical composition over the last 40 years S.Rast(1), M.G.Schultz(2) (1) Max Planck Institute.
. Assimilation of MIPAS-ENVISAT chemical constituents during a major EPP-NOx event over Antarctic winter A.Robichaud 1, R. Ménard 1, Yves Rochon.
10-11 October 2006HYMN kick-off TM3/4/5 Modeling at KNMI HYMN Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the.
The Impact of the Reduced Radiosonde Observation in Russia on GRAPES Global Model Weihong Tian, Ruichun Wang, Shiwei Tao, Xiaomin Wan Numerical Prediction.
Data assimilation: a powerful tool for atmospheric chemistry Jeff Xia.
MODIS Winds Assimilation Impact Study with the CMC Operational Forecast System Réal Sarrazin Data Assimilation and Quality Control Canadian Meteorological.
Page 1 Validation by Model Assimilation and/or Satellite Intercomparison - ESRIN 9–13 December D-VAR chemical data assimilation of ENVISAT chemical.
OsloCTM2  3D global chemical transport model  Standard tropospheric chemistry/stratospheric chemistry or both. Gas phase chemistry + essential heteorogenous.
Atmospheric Chemistry of the Ozone Layer. Levels of Atmospheric Ozone have been Dropping NASA -
Chemical Data Assimilation activities at MSC and plans for Chemical Weather Richard Ménard*, Alain Robichaud, Pierre Gauthier, Alexander Kallaur, Martin.
Indirect impact of ozone assimilation using Gridpoint Statistical Interpolation (GSI) data assimilation system for regional applications Kathryn Newman1,2,
C-IFS: How are developments integrated
European Centre for Medium-Range Weather Forecasts
Data Assimilation Training
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Impact of Traditional and Non-traditional Observation Sources using the Grid-point Statistical Interpolation Data Assimilation System for Regional Applications.
Sentinel 5 Precursor Ozone Column products
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Initialization of Numerical Forecast Models with Satellite data
Application of Aeolus Winds
Item Taking into account radiosonde position in verification
Comparison of different combinations of ensemble-based and variational data assimilation approaches for deterministic NWP Mark Buehner Data Assimilation.
Atmospheric Composition Data Assimilation:
Results from the THORPEX Observation Impact Inter-comparison Project
Project Team: Mark Buehner Cecilien Charette Bin He Peter Houtekamer
Joanna Struzewska Warsaw University of Technology
Benchmarking of chemical mechanisms
Presentation transcript:

Team Dr Richard Ménard (P.I.) (1) Dr Simon Chabrillat (3) Prof Jack McConnell (4) Dr Pierre Gauthier (1) Dr Dominique Fonteyn (3) Dr Jacek Kaminski (4) Dr Jean de Grandpré (1) M. Alain Robichaud (1) Dr Yves Rochon (2) Dr Thomas von Clarmann (5) M. Cécillien Charette (1) Dr Martin Charron (1) Dr Paul Vaillancourt (1) M. Alexander Kallaur (1) Dr Monique Tanguay (1) Dr Yan Yang (2) M. Michel Roch (1) With the participation of Paul-André Beaulieu (1), Quentin Errera (3), Sylvain Ménard (1), Mike Neish (2), Bin He (1) and Cathy Xie (1) Environment Canada (3) Belgisch Instituut voor Ruimte-Aëronomie (1) 2121 Transcanada Highway (2) 4905 Dufferin Street Institut dAéronomie de Belgique (BIRA-IASB) Dorval, Qc, H9P 1J3 Toronto, Ont., M3H 5T4 3, avenue Circulaire CANADA CANADA 1180 Brussels, BELGIUM (4) York University (5) Institut für Meteorologie und Klimaforschung Department of Earth and Atmospheric Science Universität Karlsruhe 4700 Keele Street, Toronto, Ont. M3J 1P3 Forschungszentrum Karlruhe CANADA GERMANY Le couplage dynamique-chimique en assimilation: Compte rendu du contrat avec l'Agence Spatiale Européenne. Partie II: Assimilation de l'ozone stratosphérique dans GEM

Introduction 1. Ozone stratosphérique et la question environnementale 2. Cycles dassimilations a) analyse dozone (avec et sans assimilation chimique) b) Impact radiatif - analyses et prédictabilité 3. Projet Bachus (Richard Ménard)

Chapman, 1930

Nitrogen catalytic cycle (Crutzen, 1970) NO + O 3 NO 2 + O 2 NO 2 + O NO + O 2 ______________________ Net result: O + O 3 2 O 2

Molina et Rowland(1974)

From the WMO ozone assessment (2006)

GEM-BACH Based on GEM-Strato (GEM – PHY 4.4) Non-orographic Gravity Wave Drag (Hines, 1997) Correlated-K radiation scheme Resolution : L80 120x240 with a lid at 0.1 hPa 45 min time step On-line & interactive ozone and water vapour Ozone climatology: Fortuin & Kelder ( hPa) HALOE (0.5 – 0.1 hPa)

BASCOE CTM 57 chemical species, all advected (S-L) O x, HO x, NO x, ClO x, BrO x and few hydrocarbons Source species: N 2 O, CH 4, H 2 O, CFCs, HCFCs and Halons 142 gas-phase reactions; 7 heterogeneous reactions 52 photodissociation reactions, J interp from tables Photochemical rates are taken from JPL-2002 Solver generated by KPP (Sandu and Sander, ACP, 2006) Numerical method: 3 rd – order Rosenbrock 45-min timesteps divided into sub-timesteps (can be as short as 1 μs)

CMC Assimilation System 3D-Var FGAT and 4D-var (Gauthier et al., 1999, 2007) Use conventional meteorological observations (radiosondes, surface observations, aircraft winds, AMSU radiances) ESA project: MIPAS observations (T, O 3, CH 4, N 2 O, HNO 3, NO 2 ) –Observation and background error statistics: Univariate background error covariances Characterization of the chemistry component done with the Hollingsworth-L ö nnberg method MIPAS temperatures used as reference for the bias correction of AMSU- a stratospheric channels

TOMS GEM-BACH 30 Sep. 2003

Comparaison des prévisions avec les RAOBS. Hemisphere Nord O-P 240 hrs

Comparaison des prévisions avec les RAOBS. Hemisphere Nord O-P 240 hrs

Comparaison des prévisions avec les RAOBS. Hemisphere Sud O-P 240 hrs

Conclusion The comparison of GEM-BACH prognostic ozone against MIPAS measurements shows that the chemistry module has an ozone deficit in the upper stratosphere. It increases with height from 10 hPa and reach ~15% at the stratopause. The assimilation of ozone using MIPAS measurements produce analyses which are within observation uncertainties in all regions from 100 to 2 hPa. In the stratopause region analyses are largely weighted by the model due to the fact that the ozone photochemical lifetime is much shorter than 6 hr. The comparison against independent measurements shows that the radiative feedback from ozone analyses contributes to improve temperature analyses globally above 3 hPa. However, the radiative impact of ozone analyses can have a negative impact in specific regions as the NH stratopause region. The ozone radiative feedback has a significant impact on the model predictability in the lower stratosphere. At 50 hPa where ozone is dynamically driven, ozone assimilation increase the temperature predictability by ~1 day. The comparison against RAOBS in the region shows that ozone interactive forecasts also produce a smaller temperature drift in the region. Above 30 hPa, the ozone photochemical lifetime decrease rapidly and the impact of ozone assimilation is lost after several days. In this region, non-interactive forecasts have a smaller bias against RAOBS in comparison with ozone interactive forecasts.

without ozone-radiation interaction with ozone-radiation interaction Cross-error covariance Temperature-Ozone Method: 6-hr differences (CQC) Radiative time scale (days) - August

5/30/2014 Dynamical and Radiative aspects