一般化された確率伝搬法の数学的構造 東北大学大学院情報科学研究科 田中和之

Slides:



Advertisements
Similar presentations
Mean-Field Theory and Its Applications In Computer Vision1 1.
Advertisements

Discrete Optimization Lecture 4 – Part 3 M. Pawan Kumar Slides available online
Section 3: Appendix BP as an Optimization Algorithm 1.
Loopy Belief Propagation a summary. What is inference? Given: –Observabled variables Y –Hidden variables X –Some model of P(X,Y) We want to make some.
Convergent Message-Passing Algorithms for Inference over General Graphs with Convex Free Energies Tamir Hazan, Amnon Shashua School of Computer Science.
Introduction to Belief Propagation and its Generalizations. Max Welling Donald Bren School of Information and Computer and Science University of California.
3 March, 2003University of Glasgow1 Statistical-Mechanical Approach to Probabilistic Inference --- Cluster Variation Method and Generalized Loopy Belief.
Belief Propagation by Jakob Metzler. Outline Motivation Pearl’s BP Algorithm Turbo Codes Generalized Belief Propagation Free Energies.
CS774. Markov Random Field : Theory and Application Lecture 04 Kyomin Jung KAIST Sep
1 Bayesian Image Modeling by Generalized Sparse Markov Random Fields and Loopy Belief Propagation Kazuyuki Tanaka GSIS, Tohoku University, Sendai, Japan.
Global Approximate Inference Eran Segal Weizmann Institute.
Genome evolution: a sequence-centric approach Lecture 6: Belief propagation.
A Trainable Graph Combination Scheme for Belief Propagation Kai Ju Liu New York University.
Genome Evolution. Amos Tanay 2009 Genome evolution: Lecture 8: Belief propagation.
24 November, 2011National Tsin Hua University, Taiwan1 Mathematical Structures of Belief Propagation Algorithms in Probabilistic Information Processing.
Some Surprises in the Theory of Generalized Belief Propagation Jonathan Yedidia Mitsubishi Electric Research Labs (MERL) Collaborators: Bill Freeman (MIT)
Physics Fluctuomatics (Tohoku University) 1 Physical Fluctuomatics 7th~10th Belief propagation Appendix Kazuyuki Tanaka Graduate School of Information.
1 October, 2007 ALT&DS2007 (Sendai, Japan ) 1 Introduction to Probabilistic Image Processing and Bayesian Networks Kazuyuki Tanaka Graduate School of Information.
1 Structured Region Graphs: Morphing EP into GBP Max Welling Tom Minka Yee Whye Teh.
Belief Propagation. What is Belief Propagation (BP)? BP is a specific instance of a general class of methods that exist for approximate inference in Bayes.
Probabilistic Graphical Models
Physics Fluctuomatics / Applied Stochastic Process (Tohoku University) 1 Physical Fluctuomatics Applied Stochastic Process 9th Belief propagation Kazuyuki.
28 February, 2003University of Glasgow1 Cluster Variation Method and Probabilistic Image Processing -- Loopy Belief Propagation -- Kazuyuki Tanaka Graduate.
Tokyo Institute of Technology, Japan Yu Nishiyama and Sumio Watanabe Theoretical Analysis of Accuracy of Gaussian Belief Propagation.
Physics Fluctuomatics (Tohoku University) 1 Physical Fluctuomatics 12th Bayesian network and belief propagation in statistical inference Kazuyuki Tanaka.
14 October, 2010LRI Seminar 2010 (Univ. Paris-Sud)1 Statistical performance analysis by loopy belief propagation in probabilistic image processing Kazuyuki.
Readings: K&F: 11.3, 11.5 Yedidia et al. paper from the class website
Physics Fluctuomatics (Tohoku University) 1 Physical Fluctuomatics 7th~10th Belief propagation Kazuyuki Tanaka Graduate School of Information Sciences,
1 Mean Field and Variational Methods finishing off Graphical Models – Carlos Guestrin Carnegie Mellon University November 5 th, 2008 Readings: K&F:
Belief Propagation and its Generalizations Shane Oldenburger.
Graduate School of Information Sciences, Tohoku University
Efficient Belief Propagation for Image Restoration Qi Zhao Mar.22,2006.
Mean field approximation for CRF inference
Physical Fluctuomatics (Tohoku University) 1 Physical Fluctuomatics 13th Quantum-mechanical extensions of probabilistic information processing Kazuyuki.
30 November, 2005 CIMCA2005, Vienna 1 Statistical Learning Procedure in Loopy Belief Propagation for Probabilistic Image Processing Kazuyuki Tanaka Graduate.
29 June, 2006 Kyoto University 1 画像処理における確率伝搬法と EM アルゴリズムの統計的性能評価 東北大学大学院情報科学研究科田中和之 Reference 田中和之 : ガウシアングラフィカルモデルにもとづく確率的情報処理におけ.
ICPR2004 (24 July, 2004, Cambridge) 1 Probabilistic image processing based on the Q-Ising model by means of the mean- field method and loopy belief propagation.
10 October, 2007 University of Glasgow 1 EM Algorithm with Markov Chain Monte Carlo Method for Bayesian Image Analysis Kazuyuki Tanaka Graduate School.
Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation Kamisetty H., Xing, E.P. and Langmead C.J. Raluca Gordan February.
Graduate School of Information Sciences, Tohoku University
Physical Fluctuomatics 13th Quantum-mechanical extensions of probabilistic information processing Kazuyuki Tanaka Graduate School of Information Sciences,
Statistical-Mechanical Approach to Probabilistic Image Processing -- Loopy Belief Propagation and Advanced Mean-Field Method -- Kazuyuki Tanaka and Noriko.
Introduction to Square Roots
Graduate School of Information Sciences, Tohoku University
Sublinear Computational Time Modeling in Statistical Machine Learning Theory for Markov Random Fields Kazuyuki Tanaka GSIS, Tohoku University, Sendai,
Graduate School of Information Sciences, Tohoku University, Japan
Graduate School of Information Sciences, Tohoku University
Graduate School of Information Sciences Tohoku University, Japan
Generalized Belief Propagation
量子情報処理にむけての クラスター変分法と確率伝搬法の定式化
Graduate School of Information Sciences, Tohoku University
≠ Particle-based Variational Inference for Continuous Systems
Cluster Variation Method for Correlation Function of Probabilistic Model with Loopy Graphical Structure Kazuyuki Tanaka Graduate School of Information.
Graduate School of Information Sciences, Tohoku University
Physical Fluctuomatics 7th~10th Belief propagation
Algorithms and Theory of
Expectation-Maximization & Belief Propagation
Graduate School of Information Sciences, Tohoku University
Advanced Mean Field Methods in Quantum Probabilistic Inference
Probabilistic image processing and Bayesian network
Probabilistic image processing and Bayesian network
Approximating the Partition Function by Deleting and then Correcting for Model Edges Arthur Choi and Adnan Darwiche University of California, Los Angeles.
Probabilistic image processing and Bayesian network
Readings: K&F: 11.3, 11.5 Yedidia et al. paper from the class website
X values y values. x values y values Domain Range.
Cluster Variation Method for Correlation Function of Probabilistic Model with Loopy Graphical Structure Kazuyuki Tanaka Graduate School of Information.
Graduate School of Information Sciences, Tohoku University
Mean Field and Variational Methods Loopy Belief Propagation
Generalized Belief Propagation
Kazuyuki Tanaka Graduate School of Information Sciences
Presentation transcript:

一般化された確率伝搬法の数学的構造 東北大学大学院情報科学研究科 田中和之 kazu@smapip.is.tohoku.ac.jp http://www.smapip.is.tohoku.ac.jp/~kazu/ 16 December, 2008 DEX-SMI2008

Introduction Factor Graph and Loopy Belief Propagation F. R. Kschischang, B. J. Frey and H.-A. Loeliger: IEEE Transactions on information theory, vol. 47, no. 2, 2001. Generalized Belief Propagation J. S. Yedidia, W. T. Freeman and Y. Weiss: IEEE Transactions on Information Theory, vol.51, no.7, pp.2282-2312, 2005. Simplified Cluster Variation Method T. Morita: Physica A, vol.155, no.1, pp.73-83, 1989. Factor Graph による確率伝搬法の表現を一般化された確率伝搬法(Generalized Belief Propagation)とSimplified Cluster Variation Methodの定式化の立場から導出する. 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation Cluster: Set of nodes Every subcluster of the element of C does not belong to C. Example: System consisting of 4 nodes 1 2 3 4 1 2 3 4 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation KL Divergence Sum of all the Basic Clusters and their Sub-Clusters Example 1 2 3 4 1 2 3 4 Subclusters Basic Clusters 16 December, 2008 DEX-SMI2008

Selection of Basic Cluster in LBP and GBP (Bethe Approx.) 1 2 4 5 3 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 4 5 3 6 7 8 9 GBP (Square Approx. in CVM; Kikuchi Approx.) 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation V: すべての頂点の集合 : 3個の頂点からなるハイパエッジの集合 : C に属するハイパエッジの副クラスターの集合 B の要素はノードとエッジのみ : Bに属するのエッジの副クラスターの集合 A の要素はノードのみ 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation 5 3 4 1 2 5 1 2 3 4 5 3 4 1 2 1 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation 5 3 4 1 2 5 3 4 1 2 1 2 5 1 2 5 3 4 1 2 1 1 2 5 1 2 5 1 2 1 1 1 2 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation Marginal Probabilities are determined so as to minimize the Kikuchi Free Energy under some Reducibility Conditions. 5 1 2 3 4 + - 5 3 4 1 2 ~ = Kikuchi Free Energy 5 1 2 Reducibility Conditions 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation 5 1 2 3 4 5 1 2 4 3 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation 5 1 2 3 4 5 1 2 4 3 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation 5 1 2 4 3 5 1 2 4 3 5 1 2 4 3 5 1 2 4 3 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation 5 1 2 5 1 2 4 3 4 3 5 1 2 4 3 5 1 2 4 3 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation 5 1 2 5 1 2 4 3 4 3 5 1 2 5 1 2 4 3 4 3 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation 5 1 2 4 3 5 1 2 4 3 5 1 2 4 3 5 1 2 4 3 5 1 2 4 3 5 1 2 4 3 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation Marginal Probabilities are determined so as to minimize the Kikuchi Free Energy under some Reducibility Conditions. 5 1 2 3 4 + - 5 3 4 1 2 ~ = Kikuchi Free Energy 1 2 5 1 2 5 1 2 1 1 2 1 Reducibility Conditions 16 December, 2008 DEX-SMI2008

Simplified Cluster Variation Method Marginal Probabilities are determined so as to minimize the Kikuchi Free Energy under some Reducibility Conditions. 5 1 2 3 4 + - 5 3 4 1 2 ~ = 1 2 5 1 2 5 1 2 1 1 2 1 Reducibility Conditions 16 December, 2008 DEX-SMI2008

Simplified Cluster Variation Method 5 1 2 3 4 5 1 2 4 3 16 December, 2008 DEX-SMI2008

Simplified Cluster Variation Method 5 1 2 3 4 5 1 2 4 3 16 December, 2008 DEX-SMI2008

Simplified Cluster Variation Method 5 1 2 4 3 5 1 2 4 3 5 1 2 5 1 2 4 3 4 3 16 December, 2008 DEX-SMI2008

Simplified Cluster Variation Method 5 1 2 4 3 5 1 2 4 3 5 1 2 4 3 16 December, 2008 DEX-SMI2008

Simplified Cluster Variation Method and Factor Graph 5 3 4 1 2 5 3 4 1 2 5 1 2 3 4 5 3 4 1 2 1 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation 5 3 4 1 2 5 1 2 3 4 5 3 4 1 2 1 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation 5 3 4 1 2 5 1 2 3 4 5 3 4 1 2 1 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation Marginal Probabilities are determined so as to minimize the Kikuchi Free Energy under some Reducibility Conditions. 5 3 4 1 2 1 2 3 1 5 4 5 1 2 3 4 1 ~ + + + = - - - - 5 1 1 2 4 1 3 1 + 1 Kikuchi Free Energy 5 1 2 Reducibility Conditions 16 December, 2008 DEX-SMI2008

Generalized Belief Propagation Marginal probabilities are determined so as to minimize the Kikuchi Free Energy under some Reducibility Conditions. 5 3 4 1 2 1 2 3 1 5 4 5 1 2 3 4 1 ~ + + + = 1 2 3 4 5 Kikuchi Free Energy 5 1 2 5 1 2 Reducibility Conditions 16 December, 2008 DEX-SMI2008

Simplified Cluster Variation Method 5 2 5 1 2 2 1 5 4 1 1 4 3 1 3 4 3 16 December, 2008 DEX-SMI2008

Simplified Cluster Variation Method 5 1 2 4 3 5 1 2 4 3 5 1 2 4 3 16 December, 2008 DEX-SMI2008

Simplified Cluster Variation Method and Factor Graph 5 3 4 1 2 5 3 4 1 2 5 1 2 3 4 5 3 4 1 2 16 December, 2008 DEX-SMI2008

Selection of Basic Clusters and their Sub-Clusters in Generalized Belief Propagation on Square Grid The set of Basic Clusters The Set of Basic Clusters and Their Sub-Clusters LBP (Bethe Approx.) 16 December, 2008 DEX-SMI2008

(Square Approximation in CVM) Selection of Basic Clusters and their Sub-Clusters in Generalized Belief Propagation on Square Grid The Set of Basic Clusters and Their Sub-Clusters The set of Basic Clusters GBP (Square Approximation in CVM) 16 December, 2008 DEX-SMI2008

Critical Points for Ising Model (V,E)=Square Lattice (V,E)=Cube Lattice TC/J Exact (Onsager) 2.2692 GBP 2.4257 SCVM 2.6253 Square Cactus CVM 2.7708 Bethe Approx. 2.8854 Factor Graph 3.4659 Mean Field Approx. 4.0000 TC/J High Temperature Series 4.5103 GBP 4.6097 SCVM 4.7611 Cube Cactus CVM 4.8396 Bethe Approx. 4.9326 Mean Field Approx. 6.0 Factor Graph 8.6181 16 December, 2008 DEX-SMI2008

Summary We reviewed the generalized belief propagation based on cluster variation method. Some extensions of the generalized belief propagation have been given by using the simplified cluster variation method. The relationship between the factor graph and the present extensions by means of the simplified cluster variation method are clarified. 16 December, 2008 DEX-SMI2008