Changing the Properties of Steels

Slides:



Advertisements
Similar presentations
Heat Treatments of Ferrous Alloys
Advertisements

Ferrous Metallurgy: The Chemistry and Structure of Iron and Steel
Heat Treatment of Steel
Heat Treatment of Plain Carbon Steels. Isothermal Temperature-time Transformation Diagram n Let us do an experiment n Choose an eutectoid steel n Heat.
HEAT TREATMENT OF STEEL
INDUSTRIAL MATERIALS Instructed by: Dr. Sajid Zaidi
Heat treatment 1. Introduction
Heat Treatment of metals
Heat Treatment ISAT 430. Module 6 Spring 2001Dr. Ken Lewis ISAT Heat Treatment Three reasons for heat treatment To soften before shaping To relieve.
TAFE NSW -Technical and Further Education Commission ENMAT101A Engineering Materials and Processes Associate Degree of Applied.
Annealing  Annealing is done to improve ductility (the ability to be drawn and extruded) and reduce brittleness.  Annealing consists of softening the.
UNIT 3: Metal Alloys Unit 3 Copyright © 2012 MDIS. All rights reserved. 1 Manufacturing Engineering.
Incubation Temp.( 0 C) Time at which Transformation Starts/Begins Ends 700S1E1 650S2E2 600S3E3 550S4E4 500S5E5 450S6E6 400S7E7 350S8E SE SnEn -----SrEr.
Group 2 Steels: Medium Carbon Alloy Steels (0.25 – 0.55 %C)
Annealing Makes a metal as soft as possible
Mechanical & Aerospace Engineering West Virginia University Strengthening by Phase Transformation.
Chapter 5 Ferrous Alloys.
Welding Metallurgy 2.
CARBON STEEL Microstructure & Mechanical properties
Heat Treatment of Metals
Introduction The properties and behavior of metals (and alloys) depend on their: Structure Processing history and Composition Engr 241.
Heat Treatment of Metals
MATERIAL SCIENCE. Introduction  “A combination of heating and cooling operation, timed and applied to a metal or alloy in the solid state in a way that.
TAFE NSW -Technical and Further Education Commission ENMAT101A Engineering Materials and Processes Associate Degree of Applied.
Bachelor of Technology Mechanical
Thermal Processing of Metal Alloys
Annealing Processes All the structural changes obtained by hardening and tempering may be eliminated by annealing. to relieve stresses to increase softness,
Heat Treatments Treating of materials by controlling cooling can produce differences in material properties.
Metal Alloys: Their Structure & Strengthening by Heat Treatment
Heat Treatment.
Group 4 Steels: Tools Steels and Their Uses High speed (HS) tools steels are used for high cutting speeds such as drills, mill cutters, taps and others.
Anandh Subramaniam & Kantesh Balani
IE210 Production Engineering Heat Treatment n Annealing n Martensite Formation in Steel – Time-Temperature-Transformation Curve – Heat Treatment Process.
- heating on at required temperature - dwell at temperature - cooling
Annealing, Normalizing, and Quenching of Metals
Forging new generations of engineers
Prepared by:- VISHAL RATHOD SNEH RATHOD RUTUL SHAH RAJ MEHTA PARTH VORA Heat Treatment.
Fe-Carbon Diagram, TTT Diagram & Heat Treatment Processes
HEAT TREATMENT OF STEEL
An Introduction to Ferrous Metallurgy TSM 233 Unit 13.
Extraction of iron and steel Final Form  Molten steel to final form  Molten steel to Ingots to desired shape.
Anandh Subramaniam & Kantesh Balani
DR KAFEEL AHMED Cast iron Properties 1.Strength 2.Hardness 3.Brittleness 4.Stiffness Depends upon 1.Alloying elements 2.Annealing.
Annealing , normalizing , quenching , martensitic transformation .
C.K.PITHAWALA COLLEGE OF ENGG. & TECHNOLGY Presented By :- Group No :- 6 1 DereViral M Rajwadwala Faizal Mavdiya Yash
Non-Equilibrium Heat Treatment. Steel Crystal Structures: Ferrite – BCC iron w/ carbon in solid solution (soft, ductile, magnetic) Austenite – FCC iron.
Fe-Carbon Diagram, TTT Diagram & Heat Treatment Processes
HEAT TREATMENT -I.
Vadodara Institute of Engineering
Heat Treatments Treating of materials by controlling cooling can produce differences in material properties.
Heat Treatment of Steel
Thermal Processing of Metal Alloys
Smt. S. R. Patel engineering college ,Dabhi.
HEAT TREATMENT PROCESS
Chapter 11: Metal Alloys Heat Treatment
Lecture 14 – The surface hardening of steels
By: Engr. Hassaan Bin Younis
 Bulk and Surface Treatments  Annealing, Normalizing, Hardening, Tempering  Hardenability HEAT TREATMENT.
Which of the following is a single phase that can occur in steels:
Group 3 Steels: Eutectoid Composition Steels
Microstructure of Steel
ME ENGINEERING MATERIALS AND METALLURGY
Heat Treatment of Metals
Group 2 Steels: Medium Carbon Alloy Steels (0.25 – 0.55 %C)
Heat Treatments Treating of materials by controlling cooling can produce differences in material properties.
Heat Treatment of Steels
Heat Treatment of Metals
Steel production Engineering alloys Engineering Materials
Heat Treatment of Steels
Presentation transcript:

Changing the Properties of Steels

Steels Can be heat treated to alter properties by either: Heating and rapid cooling (quenching) Heating and slow cooling

Quenching The steels shown in blue on the following slide can be heat treated to harden them by quenching.

Hardening Temperatures The temperatures for hardening depend on the carbon content. Plain carbon steels below 0.4% will not harden by heat treatment. The temperature decreases from approx 820 deg C as carbon content increases from 0.4% up to 0.8%, where temperature is approx 780 deg C. Above 0.8% the temperature remains constant at 780 deg C.

Austenite This is the structure of irons and steels at high temperatures (over 800 deg C). For quench hardening all the material must start as Austenite. Quenching causes the Austenite to be partially or totally transformed to Martensite.

Martensite Only formed by very rapid cooling from the austenitic structure. Needs to be above the Critical Cooling Rate.

The needle-like structure of martensite, the white areas are retained austenite.

Hardenability This is dependent upon the chemical composition of the steel alloy. The addition of Nickel, Chromium and Molybdenum will slow the transformation to other phases and allow more martensite to form. Most heat treatable steels are alloys rather than plain carbon steels.

Quenching Media Four commonly used quenching media: Brine – the fastest cooling rate Water – moderate cooling rate Oil – slowest cooling rate Gas – used in automatic furnaces, usually liquid nitrogen, can be very fast cooling. Too rapid cooling can cause cracking in complex and heavy sections.

Depth of Hardening Due to the mass effect, not all the section of a large component may be hardened due to too slow a cooling rate. This may leave a soft core, or in extreme cases prevent hardening altogether.

The Heat Treatment Process “Pearlite” (ductile) BCC + Fe3C with different microstructures How you heat treat makes all the difference to the steel you get “Martensite” (brittle)

Tempering The brittleness of martensite makes hardened steels unsuitable for most applications. This requires the steel to be tempered by re-heating to a lower temperature to reduce the hardness and improve the toughness. This treatment converts some of the martensite to another structure called bainite.

Tempering Temperatures

Slow Cooling Rate Processes Normalising Annealing Spheroidising Stress-relief annealing

Normalising Heat to Upper Critical Temperature, at which point the structure is all Austenite Cool slowly in air. Structure will now be fine equi-axed pearlite. Used to restore the ductility of cold or hot worked materials whilst retaining other properties.

Annealing Heat to above Upper Critical Temperature, at which point the structure is all Austenite Cool very slowly in the furnace. Structure will now be large-grained pearlite. Used to improve the properties of cast and forged steels prior to machining.

Grain Growth A glass vial containing a liquid that foams. Shaking results in a fine foam, which slowly coarsens with time. The coarsening process is somewhat analogous to grain growth in solids. The same vial, after allowing some time for the foam to coarsen. The process occurs in order to reduce the surface per unit volume.

Spheroidising Heat to just below Lower Critical Temperature. (about 650-700 deg C) Cool very slowly in the furnace. Structure will now be spheroidite, in which the Iron Carbide has ‘balled up’. Used to improve the properties of medium and high carbon steels prior to machining or cold working.

Process (stress-relief) Annealing Heat to below Upper Critical Temperature to cause recrystallisation Cool very slowly in the furnace. Structure will now be equi-axed pearlite. Used to maximise the ductility of low carbon steels and other materials after cold working.

Cold Working Cold roll to “pancake” grains Increases hardness and strength at the expense of ductility.