Minimum Weight Plastic Design For Steel-Frame Structures EN 131 Project By James Mahoney.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

1
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
INTRODUCTION TO MECHANICS FOR SOLIDS AND STRUCTURES
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 3 CPUs.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 10 second questions
Solve Multi-step Equations
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
Forces in Beams and Cables
EU market situation for eggs and poultry Management Committee 20 October 2011.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
2 |SharePoint Saturday New York City
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
BEEF & VEAL MARKET SITUATION "Single CMO" Management Committee 18 April 2013.
VOORBLAD.
Name Convolutional codes Tomashevich Victor. Name- 2 - Introduction Convolutional codes map information to code bits sequentially by convolving a sequence.
1 public class Newton { public static double sqrt(double c) { double epsilon = 1E-15; if (c < 0) return Double.NaN; double t = c; while (Math.abs(t - c/t)
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
Constant, Linear and Non-Linear Constant, Linear and Non-Linear
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Splines IV – B-spline Curves
Mrs. Rivas International Studies Charter School. Worksheet Practice 7-1 to 7-5Section 7-1 Algebra Solve each proportion.
Note to the teacher: Was 28. A. to B. you C. said D. on Note to the teacher: Make this slide correct answer be C and sound to be “said”. to said you on.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Equal or Not. Equal or Not
Januar MDMDFSSMDMDFSSS
Analyzing Genes and Genomes
Vector Algebra One Mark Questions PREPARED BY:
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Energy Generation in Mitochondria and Chlorplasts
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Distributed Computing 9. Sorting - a lower bound on bit complexity Shmuel Zaks ©
Secret Sharing, Matroids, and Non-Shannon Information Inequalities.
Presentation transcript:

Minimum Weight Plastic Design For Steel-Frame Structures EN 131 Project By James Mahoney

Program Objective: Minimization of Material Cost Objective: Minimization of Material Cost –Amount of rolled steel required Non-Contributing Cost Factors Non-Contributing Cost Factors –Fabrication –Construction/Labor costs

Program Constraints Structure to be statically sound Structure to be statically sound –Loads transmitted to foundation through member stresses –Members capable of withstanding these internal stresses

Member Properties Wide-Flange Shape Wide-Flange Shape Full Plastic Moment Full Plastic Moment M p F y x(Flange Area)xd Weight Proportional to M p Weight Proportional to M p Total Flange Area >> Web Area Weight Proportional to Flange Area Weight Proportional to Flange Area

Objective Function Calculating Total Weight Calculating Total Weight –Each member assigned full plastic moment –Weight = member length x weight per linear foot linear foot Vertical members: Weight = H x M p Vertical members: Weight = H x M p Horizontal members: Weight = L x M p Horizontal members: Weight = L x M p

Objective Function For a Single Cell Frame For a Single Cell Frame Min Weight = 2H x M p1 + L x M p2 Min Weight = 2H x M p1 + L x M p2 M p1 M p2 P P

Objective Function Frame for Analysis Frame for Analysis

Objective Function Minimum Weight Function Minimum Weight Function MIN = H x (M p1 +2xM p2 +M p3 +M p4 +2xM p5 +M p6 +2xM p13 ) MIN = H x (M p1 +2xM p2 +M p3 +M p4 +2xM p5 +M p6 +2xM p13 ) + L x (M p7 +M p8 +M p9 +M p10 +M p11 +M p12 +M p14 ) + L x (M p7 +M p8 +M p9 +M p10 +M p11 +M p12 +M p14 ) Subject to constraints of Static Equilibrium Subject to constraints of Static Equilibrium

Equilibrium State Critical Moment Locations in Frame Critical Moment Locations in Frame –Seven critical moment nodes form that are the result of plastic hinging –One hinge develops at each member end (when fixed) and under the point load –Moments causing outward compression are positive while moments producing outward tension are negative Critical moments in each member are paired with an assigned full plastic moment Critical moments in each member are paired with an assigned full plastic moment

Use of Virtual Work Principle: EVW = IVW Principle: EVW = IVW –The work performed by the external loading during displacement is equal to the internal work absorbed by the plastic hinges –Rotational displacement measured by θ said to be very small

Use of Virtual Work Beam Mechanism (Typical) Beam Mechanism (Typical) P θ θ 2θ2θ L/2 IVW = EVW -M 1 θ + 2M 2 θ – M 3 θ = P(L/2)θ or -M 1 + 2M 2 – M 3 = P(L/2)

Use of Virtual Work Loading Schemes Loading Schemes –Point Loads Defined placement along beam Defined placement along beam R (ratio factor) = 0.5 at midspan, etc. R (ratio factor) = 0.5 at midspan, etc. Results in adjustment of beam mechanism equations for correct placement of hinges Results in adjustment of beam mechanism equations for correct placement of hinges –Distributed Load Placed over length of beam Placed over length of beam Result is still a center hinge Result is still a center hinge Change in EVW formula Change in EVW formula EVW = Q*(L^2)/4

Use of Virtual Work Seven Beam Mechanisms Seven Beam Mechanisms –One for each beam -(1-R1)*VALUE(24)+VALUE(23)-R1*VALUE(22) = P1*R1*(1-R1)*L -(1-R2)*VALUE(21)+VALUE(20)-R2*VALUE(19) = P2*R2*(1-R2)*L -(1-R3)*VALUE(18)+VALUE(17)-R3*VALUE(16) = P3*R3*(1-R3)*L -(1-R4)*VALUE(4)+VALUE(5)-R4*VALUE(6) = P4*R4*(1-R4)*L -(1-R5)*VALUE(7)+VALUE(8)-R5*VALUE(9) = P5*R5*(1-R5)*L -(1-R6)*VALUE(10)+VALUE(11)-R6*VALUE(12) = P6*R6*(1-R6)*L -VALUE(33)+2*VALUE(34)-VALUE(35) = Q1*(L^2)/4

Use of Virtual Work Sway Mechanism (Simple Case) Sway Mechanism (Simple Case) θ P IVW = EVW -M 1 θ + M 2 θ – M 3 θ + M 4 θ= PHθ -M 1 θ + M 2 θ – M 3 θ + M 4 θ = PHθor -M 1 + M 2 – M 3 + M 4 = PH H

Use of Virtual Work Three Sway Mechanisms Three Sway Mechanisms –One for each level of framing VALUE(1)-VALUE(25)+VALUE(28)-VALUE(15) = F1*H -VALUE(2)+VALUE(26)-VALUE(29)+VALUE(14)+VALUE(3)- VALUE(27)+VALUE(30)-VALUE(13) = F2*H -VALUE(31)+VALUE(32)-VALUE(36)+VALUE(37) = F3*H

Use of Virtual Work Joint Equilibrium (Simple Case) Joint Equilibrium (Simple Case) –Total work done in joint must equal zero for stability θ -M 1 + M 2 = M 3 – M 4 + M 5 + M 6 = 0

Use of Virtual Work Ten Joint Equilibriums Ten Joint Equilibriums –One for each joint VALUE(24)+VALUE(2)-VALUE(1) = 0 VALUE(4)+VALUE(31)-VALUE(3) = 0 VALUE(16)+VALUE(14)-VALUE(15) = 0 VALUE(30)+VALUE(9)-VALUE(10) = 0 VALUE(33)-VALUE(32) = 0 VALUE(36)-VALUE(35) = 0 VALUE(13)-VALUE(12) = 0 VALUE(7)-VALUE(6)+VALUE(37)-VALUE(27) = 0 VALUE(21)-VALUE(22)+VALUE(26)-VALUE(25) = 0 VALUE(19)-VALUE(18)+VALUE(29)-VALUE(28) = 0

Program Breakdown Solving Critical Moments Solving Critical Moments –37 unknown critical moments –17 levels of structural indeterminacy –Requires 20 indep. equil. equations 7 beam mechanisms 7 beam mechanisms 3 sway mechanisms 3 sway mechanisms 10 joint equations 10 joint equations

Design Against Collapse Lower Bound Theorem Lower Bound Theorem –Structure will not collapse when found to be in a statically admissible state of stress (in equilibrium) for a given loading (P, F, etc.) Therefore applied loading is less than the load condition at collapse (i.e. P<=Pc and F<=Fc) Therefore applied loading is less than the load condition at collapse (i.e. P<=Pc and F<=Fc) Moments to be Safe Moments to be Safe –Plastic moments set to equal greatest magnitude critical moment in pairing -(M p ) j <= M i <= (M p ) j for all (i,j) moment pairings