Zhongjuan Zhang, Elise Tucker, Marita Hermann, Thomas Laux 

Slides:



Advertisements
Similar presentations
A Histone H3 Lysine-27 Methyltransferase Complex Represses Lateral Root Formation in Arabidopsis thaliana  Gu Xiaofeng , Xu Tongda , He Yuehui   Molecular.
Advertisements

Volume 100, Issue 6, Pages (March 2000)
Volume 14, Issue 1, Pages (January 2008)
Volume 123, Issue 7, Pages (December 2005)
Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis
Volume 17, Issue 4, Pages (October 2009)
Volume 14, Issue 6, Pages (June 2008)
Volume 21, Issue 4, Pages (October 2011)
Volume 35, Issue 2, Pages (October 2015)
Volume 19, Issue 23, Pages (December 2009)
Volume 21, Issue 15, Pages (August 2011)
Volume 6, Issue 6, Pages (November 2013)
Volume 24, Issue 4, Pages (February 2013)
Volume 119, Issue 1, Pages (October 2004)
Stem Cell Regulation by Arabidopsis WOX Genes
A Feedback Mechanism Controlling SCRAMBLED Receptor Accumulation and Cell- Type Pattern in Arabidopsis  Su-Hwan Kwak, John Schiefelbein  Current Biology 
A MAPKK Kinase Gene Regulates Extra-Embryonic Cell Fate in Arabidopsis
Volume 34, Issue 2, Pages (July 2015)
Volume 123, Issue 7, Pages (December 2005)
Volume 10, Issue 11, Pages (March 2015)
Volume 24, Issue 2, Pages (January 2013)
Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots  Juthamas Chaiwanon, Zhi-Yong Wang 
Transcriptional Activation of Arabidopsis Axis Patterning Genes WOX8/9 Links Zygote Polarity to Embryo Development  Minako Ueda, Zhongjuan Zhang, Thomas.
Volume 23, Issue 20, Pages (October 2013)
Volume 9, Issue 1, Pages (January 2016)
Yvonne Stahl, René H. Wink, Gwyneth C. Ingram, Rüdiger Simon 
Potassium Transporter KUP7 Is Involved in K+ Acquisition and Translocation in Arabidopsis Root under K+-Limited Conditions  Min Han, Wei Wu, Wei-Hua Wu,
Volume 26, Issue 11, Pages (June 2016)
Takatoshi Kiba, Kentaro Takei, Mikiko Kojima, Hitoshi Sakakibara 
Kaoru Sugimoto, Yuling Jiao, Elliot M. Meyerowitz  Developmental Cell 
Volume 34, Issue 2, Pages (July 2015)
Volume 23, Issue 18, Pages (September 2013)
Volume 19, Issue 1, Pages (July 2010)
Volume 23, Issue 24, Pages (December 2013)
Volume 41, Issue 4, Pages e4 (May 2017)
Volume 26, Issue 18, Pages (September 2016)
Volume 10, Issue 7, Pages (July 2017)
Volume 10, Issue 2, Pages (February 2006)
Samuel A. LoCascio, Sylvain W. Lapan, Peter W. Reddien 
Volume 20, Issue 6, Pages (June 2011)
Auxin–Cytokinin Interaction Regulates Meristem Development
The WUSCHEL Related Homeobox Protein WOX7 Regulates the Sugar Response of Lateral Root Development in Arabidopsis thaliana  Danyu Kong, Yueling Hao, Hongchang.
Volume 19, Issue 17, Pages (September 2009)
Volume 25, Issue 23, Pages (December 2015)
Early Lineage Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through the Grb2-MAPK Pathway  Claire Chazaud, Yojiro Yamanaka,
Volume 28, Issue 4, Pages (February 2014)
Volume 12, Issue 3, Pages (March 2007)
Volume 115, Issue 5, Pages (November 2003)
Volume 39, Issue 2, Pages (October 2016)
Volume 13, Issue 20, Pages (October 2003)
The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes  Li Zi-Yu , Li Bin , Dong Ai-Wu.
Volume 28, Issue 4, Pages (February 2014)
Distinct Apical and Basolateral Mechanisms Drive Planar Cell Polarity-Dependent Convergent Extension of the Mouse Neural Plate  Margot Williams, Weiwei.
RPK1 and TOAD2 Are Two Receptor-like Kinases Redundantly Required for Arabidopsis Embryonic Pattern Formation  Michael D. Nodine, Ramin Yadegari, Frans.
Volume 37, Issue 3, Pages (May 2016)
Drosophila Maelstrom Ensures Proper Germline Stem Cell Lineage Differentiation by Repressing microRNA-7  Jun Wei Pek, Ai Khim Lim, Toshie Kai  Developmental.
Yu-Chiun Wang, Zia Khan, Eric F. Wieschaus  Developmental Cell 
Shigeki Yoshiura, Nao Ohta, Fumio Matsuzaki  Developmental Cell 
Volume 23, Issue 11, Pages (June 2013)
Volume 15, Issue 6, Pages (December 2008)
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Interaxonal Interaction Defines Tiled Presynaptic Innervation in C
PtrHB7, a class III HD-Zip Gene, Plays a Critical Role in Regulation of Vascular Cambium Differentiation in Populus  Yingying Zhu, Dongliang Song, Jiayan.
Volume 22, Issue 18, Pages (September 2012)
Volume 7, Issue 8, Pages (August 2014)
Masakazu Hashimoto, Hiroshi Sasaki
Volume 34, Issue 2, Pages (July 2015)
From thin to thick: major transitions during stem development
Wang Long , Mai Yan-Xia , Zhang Yan-Chun , Luo Qian , Yang Hong-Quan  
Laura A. Moody, Steven Kelly, Ester Rabbinowitsch, Jane A. Langdale 
Presentation transcript:

A Molecular Framework for the Embryonic Initiation of Shoot Meristem Stem Cells  Zhongjuan Zhang, Elise Tucker, Marita Hermann, Thomas Laux  Developmental Cell  Volume 40, Issue 3, Pages 264-277.e4 (February 2017) DOI: 10.1016/j.devcel.2017.01.002 Copyright © 2017 Elsevier Inc. Terms and Conditions

Developmental Cell 2017 40, 264-277. e4DOI: (10. 1016/j. devcel. 2017 Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 The WOX2 Module Is Required for Initiation of CLV3 Expression (A–C) CLV3 in situ hybridization in wild-type (WT) transition (A), torpedo (B), and bent cotyledon (C) embryos. Arrowheads indicate CLV3 expression. (D–I) Expression of pCLV3:er-CFP in WT and segregating wus-1/+ embryos at the heart (D and E), and torpedo stages in frontal (F and G) and sagittal (H and I) planes. (J–O) Expression of pCLV3:er-tdTomato in early heart (J, L, and N) and early torpedo stage (K, M, and O) embryos of WT, wox1235, and pWOX2:rPHV wox1235 (rPHV wox1235). Arrowhead in (M) indicates very weak pCLV3:er-tdTomato expression. (P–U) Phenotypes of 10-day-old seedlings: WT; WT-like (two cotyledons with shoot apical meristem, SAM); scot + SAM (single cotyledon with SAM); scot − SAM (single cotyledon without SAM); pin + SAM (pin-like shoot with SAM). (V) Box plot of pCLV3:er-tdTomato expression levels in embryos with two cotyledons. 18 ≤ n ≤ 28. wox, wox1235; rPHV, pWOX2:rPHV. a, b, and c indicate significance categories (p < 0.01, ANOVA combined with Tukey’s HSD test). Scale bars, 20 μm (A–O) and 1 mm (P–U). See also Figure S1 and Tables S1–S3. Developmental Cell 2017 40, 264-277.e4DOI: (10.1016/j.devcel.2017.01.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 The WOX2 Module Promotes Central and Inhibits Peripheral Cell Identity in Globular Embryos (A–F) Embryo phenotypes. Cell walls are shown in red (pWOX2:tdTomato-LTI6b), and nuclei in green (pWOX2:H2B-GFP). Arrowheads denote missing protodermal divisions in (D) and premature horizontal cell divisions in (E). The boundary between the apical and basal domains is outlined with dashed lines. (G–I) In situ hybridization of AHP6 mRNA in globular embryos. (J–P) pDPA4:NLS-YFP3 expression in WT (J and J′, serial images of the same embryo; J, periphery; J′, median plane; L, front view; M, sagittal view) and wox1235 embryos (K, median plane; N–P, front views) at globular (J–K) and early heart stages (L–P). %, percentage of embryos with the shown phenotype. Scale bars, 20 μm. Developmental Cell 2017 40, 264-277.e4DOI: (10.1016/j.devcel.2017.01.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 Elevated Auxin Activity Mediates Stem Cell Defects in wox1235 Embryos (A–G) DR5:GFP expression in early globular (A–C) and transition stage embryos (D–G). (H–M) pPIN1:PIN1-GFP expression in early globular (H–J) and early heart stage embryos (K–M). (F) + (G) is 58.1% (n = 43); (L) + (M) is 60% (n = 70); remaining wox1235 embryos display WT-like expression. Arrowheads and asterisks in (K) to (M) indicate the central domain and lens-shaped cells, respectively. (N) pWOX2:YUC1 (YUC1) increases stem cell defects in wox1235 (wox) embryos. pCLV3:er-tdTomato (pCLV3) was used as stem cell marker. In seedlings, the shoot meristem was scored morphologically. n = 20 for each embryo stage and 111 ≤ n ≤ 162 for seedlings. (O) pWOX2:iaaL (iaaL) significantly increases the frequency of wox1235 (wox) seedlings with shoot meristem. WT-like, scot/pin + SAM, and scot/pin-SAM are as shown in Figures 1Q, 1(R + S), and 1(T + U), respectively. The same applies to (N) and Figures 6A, 7C, and S5E. Three transgenic lines are shown. 39 ≤ n ≤ 51. a, b, and c indicate the significance categories (p < 0.01, chi-square test). Scale bars, 20 μm. See also Figure S2. Developmental Cell 2017 40, 264-277.e4DOI: (10.1016/j.devcel.2017.01.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 4 The WOX2 Module Promotes HD-ZIP III Expression (A–F) In situ hybridization of PHB mRNA in globular (A and D), transition (B and E), and torpedo (C and F) stage embryo. Cells strongly expressing PHB in globular embryos are outlined. Arrowheads indicate the region with reduced signal. (G) In situ hybridization of ZPR3 mRNA in WT globular embryo. (H–J) Expression of pZPR3:NLS-GFP3 in globular embryos. Scale bars, 20 μm. See also Figure S2. Developmental Cell 2017 40, 264-277.e4DOI: (10.1016/j.devcel.2017.01.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 5 The WOX2 Module Regulates PHV and MIR166B Transcription (A–D) Expression levels of pPHV:NLS-GFP3 (A and B) and pMIR166B:erGFP expression (C and D) in globular embryos. Dashed line in (C) and (D) indicates the boundary between apical and basal domains. (E) Box plot shows the fluorescence intensity of pMIR166B:erGFP in WT (n = 31) and wox1235 (wox, n = 26) embryos. (F) Domains measured in (E). ap, apical domain. ba, basal domain. sus, suspensor. (G–J) pRPS5a:sGFP expression in globular embryos. (K) Box plot shows the fluorescence intensity of pRPS5a:sGFP in WT, wox1235 (wox), and pWOX2:MIM165/166 (MIM). 19 ≤ n ≤ 35. (L) Domains measured in (K). a and b indicate the significantly associated categories (in E, p < 0.001, Student’s t test; in (K), p < 0.01, ANOVA combined with Tukey’s HSD test). Scale bars, 20 μm. (G) and (I) are fluorescence images, and (H) and (J) fluorescence merged with differential interference contrast images. See also Figures S3 and S4. Developmental Cell 2017 40, 264-277.e4DOI: (10.1016/j.devcel.2017.01.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 6 Restored Expression of HD-ZIP III and IPT1 Suppress wox1235 Stem Cell Defects (A) Percentage of seedling phenotypes. 49 ≤ n ≤ 660. rPHV and wox indicate pWOX2:rPHV and wox1235, respectively. (B–E) Expression pattern of pAHP6:NLS-GFP3. Arrowheads indicate regions with reduced expression. Scale bars, 20 μm (F) Embryos with various DR5:GFP expression patterns. The categories WT-like, Em pro (embryo proper), and whole Em (whole embryo) are as shown in Figures 3A–3C. 24 ≤ n ≤ 32. a, b, and c indicate the significantly associated categories (p < 0.001, chi-square test). See also Figures S4 and S5. Developmental Cell 2017 40, 264-277.e4DOI: (10.1016/j.devcel.2017.01.002) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 7 The WOX2 Module Promotes Stem Cell Initiation Partially through Cytokinin (A) Relative expression of IPT1. Error bars denote ±SD. (B) pWOX2:IPT1 restores pCLV3:er-tdTomato (pCLV3) expression at the heart stage wox1235 embryos. 18 ≤ n ≤ 27. (C) Seedling phenotypes after expression of cytokinin related genes. 134 ≤ n ≤ 354. (D) Schematic shows the WOX2 module network in stem cell initiation. CKX7, (pWOX2:CKX7); IPT1, (pWOX2:IPT1); rPHV, (pWOX2:rPHV); wox, (wox1235). Black arrows indicate interactions found in this study. a, b, and c indicate the significantly associated categories (in A and B, p < 0.05, ANOVA combined with Tukey’s HSD test; in C, p < 0.05, chi-square test). See also Figures S4 and S5. Developmental Cell 2017 40, 264-277.e4DOI: (10.1016/j.devcel.2017.01.002) Copyright © 2017 Elsevier Inc. Terms and Conditions