Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin  Tiangang Liu, Xin Lin, Xiufen Zhou, Zixin.

Slides:



Advertisements
Similar presentations
Volume 13, Issue 6, Pages (June 2006)
Advertisements

Sweetly Expanding Enzymatic Glycodiversification
Metagenomic Approaches for Exploiting Uncultivated Bacteria as a Resource for Novel Biosynthetic Enzymology  Micheal C. Wilson, Jörn Piel  Chemistry &
Volume 23, Issue 8, Pages (August 2016)
Volume 16, Issue 10, Pages (October 2009)
Foundations for Directed Alkaloid Biosynthesis
Biosynthesis of the Antitumor Agent Chartreusin Involves the Oxidative Rearrangement of an Anthracyclic Polyketide  Zhongli Xu, Kathrin Jakobi, Katrin.
Volume 20, Issue 10, Pages (October 2013)
Volume 17, Issue 4, Pages (April 2010)
Volume 17, Issue 4, Pages (April 2010)
News in Ubiquinone Biosynthesis
Volume 20, Issue 6, Pages (June 2013)
Volume 13, Issue 4, Pages (April 2006)
Volume 23, Issue 4, Pages (April 2016)
Precursor-Directed Biosynthesis
Volume 19, Issue 2, Pages (February 2012)
Volume 14, Issue 5, Pages (May 2007)
Volume 10, Issue 5, Pages (May 2003)
Volume 15, Issue 8, Pages (August 2008)
Identification and Characterization of the Lysobactin Biosynthetic Gene Cluster Reveals Mechanistic Insights into an Unusual Termination Module Architecture 
Volume 14, Issue 1, Pages (January 2007)
Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis  Anna L. Vagstad, Eric A. Hill, Jason W.
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Volume 19, Issue 3, Pages (March 2012)
Yit-Heng Chooi, Ralph Cacho, Yi Tang  Chemistry & Biology 
Volume 13, Issue 5, Pages (May 2006)
Volume 13, Issue 9, Pages (September 2006)
Volume 14, Issue 2, Pages (February 2007)
Volume 12, Issue 12, Pages (December 2005)
Liujie Huo, Shwan Rachid, Marc Stadler, Silke C. Wenzel, Rolf Müller 
Sherry S. Lamb, Tejal Patel, Kalinka P. Koteva, Gerard D. Wright 
Structure-Based Dissociation of a Type I Polyketide Synthase Module
Volume 18, Issue 5, Pages (May 2011)
The Hedamycin Locus Implicates a Novel Aromatic PKS Priming Mechanism
Volume 15, Issue 11, Pages (November 2008)
Volume 10, Issue 11, Pages (November 2003)
Volume 16, Issue 5, Pages (May 2009)
Volume 14, Issue 2, Pages (February 2007)
Volume 10, Issue 5, Pages (May 2003)
Enzymatic Extender Unit Generation for In Vitro Polyketide Synthase Reactions: Structural and Func-tional Showcasing of Streptomyces coelicolor MatB 
Evidence for a Protein-Protein Interaction Motif on an Acyl Carrier Protein Domain from a Modular Polyketide Synthase  Kira J. Weissman, Hui Hong, Bojana.
Volume 15, Issue 5, Pages (May 2008)
Biosynthetic Gene Cluster of the Glycopeptide Antibiotic Teicoplanin
Foundations for Directed Alkaloid Biosynthesis
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 11, Issue 10, Pages (October 2004)
Volume 9, Issue 2, Pages (February 2002)
Volume 11, Issue 1, Pages (January 2004)
Volume 22, Issue 6, Pages (June 2015)
Volume 17, Issue 4, Pages (April 2010)
Volume 15, Issue 6, Pages (June 2008)
Structural Basis for Phosphopantetheinyl Carrier Domain Interactions in the Terminal Module of Nonribosomal Peptide Synthetases  Ye Liu, Tengfei Zheng,
Engineered Biosynthesis of Geldanamycin Analogs for Hsp90 Inhibition
Volume 16, Issue 5, Pages (May 2009)
Gerald Lackner, Markus Bohnert, Jonas Wick, Dirk Hoffmeister 
Volume 11, Issue 3, Pages (March 2004)
Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase  Gong-Li.
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
Volume 12, Issue 6, Pages (June 2005)
Dual Carbamoylations on the Polyketide and Glycosyl Moiety by Asm21 Result in Extended Ansamitocin Biosynthesis  Yan Li, Peiji Zhao, Qianjin Kang, Juan.
Volume 14, Issue 6, Pages (June 2007)
Volume 18, Issue 8, Pages (August 2011)
Interdomain Communication between the Thiolation and Thioesterase Domains of EntF Explored by Combinatorial Mutagenesis and Selection  Zhe Zhou, Jonathan.
Volume 12, Issue 3, Pages (March 2005)
Volume 11, Issue 1, Pages (January 2004)
Cracking the Nonribosomal Code
Volume 14, Issue 9, Pages (September 2007)
Volume 12, Issue 3, Pages (March 2005)
Volume 13, Issue 3, Pages (March 2006)
Volume 22, Issue 6, Pages (June 2015)
Presentation transcript:

Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin  Tiangang Liu, Xin Lin, Xiufen Zhou, Zixin Deng, David E. Cane  Chemistry & Biology  Volume 15, Issue 5, Pages 449-458 (May 2008) DOI: 10.1016/j.chembiol.2008.04.006 Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 1 Polyether Ionophores Nanchangmycin, 1, Monensin A, 2, and Salinomycin, 3 Chemistry & Biology 2008 15, 449-458DOI: (10.1016/j.chembiol.2008.04.006) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 2 Proposed Pathway of Nanchangmycin Biosynthesis in S. nanchangensis NS3226 The parent polyketide is first assembled from a malonyl-CoA primer plus four malonyl-CoA and 10 methylmalonyl-CoA extension units, mediated by the 14 modules of the modular PKS NanA1-NanA10. The initially generated unsaturated pentadecaketide acyl-ACP ester is then thought to undergo NanO-catalyzed epoxidation, followed by a cascade of epoxide ring openings and acetalizations, catalyzed by NanI to generate the pentacylic ether. Oxidation of the terminal methyl group by the P450 NanP generates the ACP-bound nanchangmycin aglycone, which is glycosylated at the C-19 hydroxyl under the control of NanG5, before final hydrolytic release by the NanE TE. Chemistry & Biology 2008 15, 449-458DOI: (10.1016/j.chembiol.2008.04.006) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 3 Hydrolysis of Polyether and Polyketide-SNAC Substrates by the NanE TE N.R. indicates no reaction. Chemistry & Biology 2008 15, 449-458DOI: (10.1016/j.chembiol.2008.04.006) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 4 Sequence Comparison of the Type II TEs Encoded by the Nanchangmycin, Monensin, and Nigericin Biosynthetic Gene Clusters The asterisk indicates the Ser/His/Asp catalytic triad, the solid line designates the conserved GXSXG motif surrounding the active site Ser, and the black dot marks the conserved Trp residue in this motif that corresponds to an Ala in the type I TEs of polyketide biosynthesis. MonCII = monensin; NanE = nanchangmycin; NigCII = nigericin. Chemistry & Biology 2008 15, 449-458DOI: (10.1016/j.chembiol.2008.04.006) Copyright © 2008 Elsevier Ltd Terms and Conditions

Figure 5 Deletion of the nanG5 Glycosyl Transferase Gene of S. nanchangensis NS3226 Abolishes Nanchangmycin Production and Leads to Accumulation of the Nanchangmycin Aglycone, 6, in the Deletion Mutant S. nanchangensis LTΔnanG5 (A) Replacement of nanG5 by the apramycin resistance gene cassette aac(3)IV by PCR-directed mutagenesis and homologous recombination to generate S. nanchangensis LTΔnanG5. (B) The genomic DNA in the LTΔnanG5-19 mutant was checked by PCR amplification with primers NanG5-check-1 and NanG5-check-2. In the wild-type, the PCR product is 1,588 bp, while in the mutant the PCR product it is 1,671 bp. Digestion of each fragment with SacI (S) and PvuII (P) gave fragments of different sizes. (C) LC-ESI-MS of nanchangmycin aglycone (6), retention time of 2.89 min isolated from S. nanchangensis LTΔnanG5-4. Chemistry & Biology 2008 15, 449-458DOI: (10.1016/j.chembiol.2008.04.006) Copyright © 2008 Elsevier Ltd Terms and Conditions