1 Column Generation. 2 Outline trim loss problem different formulations column generation the trim loss problem master problem and subproblem in column.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advanced Piloting Cruise Plot.
Chapter 1 The Study of Body Function Image PowerPoint
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
Introduction to Algorithms 6.046J/18.401J/SMA5503
Tuesday, March 5 Duality – The art of obtaining bounds – weak and strong duality Handouts: Lecture Notes.
and 6.855J Spanning Tree Algorithms. 2 The Greedy Algorithm in Action
Summary of Convergence Tests for Series and Solved Problems
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
Multiplying binomials You will have 20 seconds to answer each of the following multiplication problems. If you get hung up, go to the next problem when.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
ADDING INTEGERS 1. POS. + POS. = POS. 2. NEG. + NEG. = NEG. 3. POS. + NEG. OR NEG. + POS. SUBTRACT TAKE SIGN OF BIGGER ABSOLUTE VALUE.
MULTIPLICATION EQUATIONS 1. SOLVE FOR X 3. WHAT EVER YOU DO TO ONE SIDE YOU HAVE TO DO TO THE OTHER 2. DIVIDE BY THE NUMBER IN FRONT OF THE VARIABLE.
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
1 LP, extended maxflow, TRW OR: How to understand Vladimirs most recent work Ramin Zabih Cornell University.
ZMQS ZMQS
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
Solve Multi-step Equations
Richmond House, Liverpool (1) 26 th January 2004.
Randomized Algorithms Randomized Algorithms CS648 1.
ABC Technology Project
Shadow Prices vs. Vickrey Prices in Multipath Routing Parthasarathy Ramanujam, Zongpeng Li and Lisa Higham University of Calgary Presented by Ajay Gopinathan.
1 Branch-and-Price (Column Generation) Solving Integer Programs With a Huge Number of Variables CP-AI-OR02 School on Optimization Le Croisic, France March.
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
1 Undirected Breadth First Search F A BCG DE H 2 F A BCG DE H Queue: A get Undiscovered Fringe Finished Active 0 distance from A visit(A)
VOORBLAD.
1 Breadth First Search s s Undiscovered Discovered Finished Queue: s Top of queue 2 1 Shortest path from s.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Squares and Square Root WALK. Solve each problem REVIEW:
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
Do you have the Maths Factor?. Maths Can you beat this term’s Maths Challenge?
© 2012 National Heart Foundation of Australia. Slide 2.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
Equal or Not. Equal or Not
Slippery Slope
Januar MDMDFSSMDMDFSSS
Week 1.
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Dantzig-Wolfe Decomposition
A SMALL TRUTH TO MAKE LIFE 100%
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
CpSc 3220 Designing a Database
Traktor- og motorlære Kapitel 1 1 Kopiering forbudt.
Chapter 6. Large Scale Optimization
Chapter 6. Large Scale Optimization
Presentation transcript:

1 Column Generation

2 Outline trim loss problem different formulations column generation the trim loss problem master problem and subproblem in column generation the time constrained shortest-path problem shortest-path subproblems for network-based problems

3 Motivation Example for Column Generation trim-loss problem, 7-meter steel pipes to cut 150 pieces of 1.5-meter (pipe) segments 250 pieces of 2-meter segments, and 200 pieces of 4-meter segments loss: pipes cut and segments left after satisfying the demands how to cut the steel pipes so as to minimize the loss?

4 Motivation Example for Column Generation X: the total number of steel pipes used trim loss = 7X – (150)(1.5) – (250)(2) – (200)(4) = 7X-1525 minimizing trim loss = minimizing X, the number of steel pipes used

5 Formulation 1: A Naive One Motivation Example for Column Generation several formulations an upper bound of pipes used: pipes cut by the (0, 1, 1) pattern 38 pipes cut by the (4, 0, 0) pattern 17 pieces cut by the (0, 3, 0) pattern

6 Formulation 1: A Naive One Motivation Example for Column Generation segments: 1 st type = 1.5 meters, 2 nd type = 2 meters, and 3 rd type = 4 meters variables. x ij = # of type-j segments cut from pipe i e.g., x i = (2, 2, 0) two 1.5-meter segments and two 2-meter segments from the ith pipe

7 Formulation 1: A Naive One Motivation Example for Column Generation formulation

8 Formulation 1: A Naive One Motivation Example for Column Generation disadvantages of Formulation 1 many alternate optimal solutions due to the symmetry hard to solve

9 Formulation 2: Variables on Cut Patterns Motivation Example for Column Generation defining variables on cut patterns parameters a ij = # of j type segments produced by the ith cut pattern a 1 = (a 11, a 12, a 13 ) T = (0, 0, 1) trim loss t 1 = 3 variables: x i = the # of steel pipes cut in the ith pattern

10 Formulation 2: Variables on Cut Patterns Motivation Example for Column Generation cut patterns

11 Formulation 2: Variables on Cut Patterns Motivation Example for Column Generation formulation: question: Is it necessary to include inefficient cut patterns in this formulation? yes is there any formulation that uses only efficient cut patterns?

12 Formulation 3: Variables on Efficient Cut Patterns Motivation Example for Column Generation efficient cut patterns

13 Formulation 3: Variables on Efficient Cut Patterns Motivation Example for Column Generation formulation

14 Formulation 3: Variables on Efficient Cut Patterns Motivation Example for Column Generation challenges faced by the formulation hard problem, an integer program explosive number of variables for long pipes and multiple demands solved by column generation ignoring the integral constraints

15 Solving the Trim Loss Problem by Column Generation min i x i, s.t. i a ij x i b j, j = 1, 2, 3, x i 0, i = 1, 2, 3. = (c B ) T B -1 be the vector of dual variables reduced cost of x i = c i - T a i = 1- T a i minimal reduced cost from max T a i

16 Solving the Trim Loss Problem by Column Generation minimal reduced cost from solving the subproblem max j j a j, s.t. j l j a j L; a j Z + {0}, i. a knapsack problem, NP-hard, with pseudo- polynomial algorithm in L

17 Solving the Trim Loss Problem by Column Generation master problem: the problem with the columns selected providing subproblem suggesting a new cut pattern, or optimal

18 Solving the Trim Loss Problem by Column Generation Generic Column Generation Algorithm for the trim loss problem: 1 Select columns for the initial basis. 2 Solve the master problem to get 3 Solve the knapsack subproblem for new cut pattern; stop if optimal, else go to 2 with the new cut pattern added to the master problem

19 Solving the Trim Loss Problem by Column Generation Solving the Trim Loss Problem by Column Generation

20 A Shortest-Path Subproblem in Solving Network-Based Problem by Column Generation a time-constrained shortest-path problem minimum cost path from node 1 to node 6 such that the total time 14 label of arcs: (c ij, t ij )

21 A Time-Constrained Shortest-Path Problem variables: x ij = 1 if arc (i, j) is taken, else x ij = 0 formulation constrained shortest- path problem, NP- hard problem

22 Path-Based Formulation of a Time- Constrained Shortest-Path Problem P: set of all paths parameters a pij = for path to be the first path, a 112 = 1, a 124 = 1, a 146 = 1, and other a 1ij = 0. possible to express x ij in p, where p = the probability that path p is taken By itself there is no guarantee p = 1 so that fractional x ij may be possible.

23 A Time-Constrained Shortest-Path Problem set of all paths for the problem

24 A Time-Constrained Shortest-Path Problem formulation

25 A Time-Constrained Shortest-Path Problem relaxed version: master problem solved by column generation 1 and 0 be the dual variable of the first and the second constraints, respectively

26 A Time-Constrained Shortest-Path Problem reduced cost of variable p

27 A Time-Constrained Shortest-Path Problem subproblem: shortest-path problem x ij {0, 1}, (i, j) A. s.t.s.t.

28 Solving the Time Constrained Shortest- Path Problem by Column Generation Generic Column Generation Algorithm for the time constrained shortest-path problem: 1 Start arbitrarily with a feasible path 2 Solve the master problem to get 3 Solve the shortest-path subproblem for new path; stop if optimal, else go to 2 with the new path added to the master problem