1 Heating and Cooling of Structure Observations by Thermo Imaging Camera during the Cardington Fire Test, January 16, 2003 Pašek J., Svoboda J., Wald.

Slides:



Advertisements
Similar presentations
1 Radio Maria World. 2 Postazioni Transmitter locations.
Advertisements

EcoTherm Plus WGB-K 20 E 4,5 – 20 kW.
Números.
1 A B C
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
/ /17 32/ / /
AP STUDY SESSION 2.
Reflection nurulquran.com.
1
EuroCondens SGB E.
Worksheets.
Slide 1Fig 26-CO, p.795. Slide 2Fig 26-1, p.796 Slide 3Fig 26-2, p.797.
Slide 1Fig 25-CO, p.762. Slide 2Fig 25-1, p.765 Slide 3Fig 25-2, p.765.
& dding ubtracting ractions.
Addition and Subtraction Equations
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
David Burdett May 11, 2004 Package Binding for WS CDL.
1 When you see… Find the zeros You think…. 2 To find the zeros...
Add Governors Discretionary (1G) Grants Chapter 6.
CALENDAR.
CHAPTER 18 The Ankle and Lower Leg
Summative Math Test Algebra (28%) Geometry (29%)
ASCII stands for American Standard Code for Information Interchange
I can count in decimal steps from 0.01 to
The 5S numbers game..
突破信息检索壁垒 -SciFinder Scholar 介绍
A Fractional Order (Proportional and Derivative) Motion Controller Design for A Class of Second-order Systems Center for Self-Organizing Intelligent.
Media-Monitoring Final Report April - May 2010 News.
Break Time Remaining 10:00.
The basics for simulations
PP Test Review Sections 6-1 to 6-6
MM4A6c: Apply the law of sines and the law of cosines.
Look at This PowerPoint for help on you times tables
TCCI Barometer March “Establishing a reliable tool for monitoring the financial, business and social activity in the Prefecture of Thessaloniki”
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
Progressive Aerobic Cardiovascular Endurance Run
Biology 2 Plant Kingdom Identification Test Review.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
Artificial Intelligence
When you see… Find the zeros You think….
2011 WINNISQUAM COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=1021.
Before Between After.
2011 FRANKLIN COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=332.
Subtraction: Adding UP
: 3 00.
5 minutes.
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Static Equilibrium; Elasticity and Fracture
ANALYTICAL GEOMETRY ONE MARK QUESTIONS PREPARED BY:
Converting a Fraction to %
Resistência dos Materiais, 5ª ed.
Clock will move after 1 minute
famous photographer Ara Guler famous photographer ARA GULER.
& dding ubtracting ractions.
Physics for Scientists & Engineers, 3rd Edition
Select a time to count down from the clock above
Copyright Tim Morris/St Stephen's School
1.step PMIT start + initial project data input Concept Concept.
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Presentation transcript:

1 Heating and Cooling of Structure Observations by Thermo Imaging Camera during the Cardington Fire Test, January 16, 2003 Pašek J., Svoboda J., Wald F. Technical University in Prague has produced this lesson with the support of the EU Fifth Framework project No. CV 5535 Tensile membrane action and robustness of structural steel joints under natural fire.

2 Fin Plate Connection before the Experiment

3 400,0°C 980,0°C t = 26 min. con,ø = 275 °C In 26 min. of fire is temperature of the structure under 400°C.

4 400,0°C 980,0°C t = t h 28T con,ø = 330 °C t = 28 con,ø = 330 °C t = 26 min. con,ø = 275 °C

5 400,0°C 980,0°C t = t h 30T con,ø = 390 °C By heating is connection colder compare to connected beam t = 30 min. con,ø = 390 °C

6 400,0°C 980,0°C t = t h 32T con,ø = 440 °C t = 32 min. con,ø = 440 °C By heating is connection colder compare to connected beam

7 400,0°C 980,0°C t = t h 34T con,ø = 480 °C t = 34 min. con,ø = 480 °C

8 400,0°C 980,0°C t = t h 36T con,ø = 520 °C Buckling of beam lower flange t = 36 min. con,ø = 520 °C

9 400,0°C 980,0°C t = t h 38T con,ø = 565 °C t = 38 min. con,ø = 565 °C Buckling of beam lower flange

10 400,0°C 980,0°C t = t h 40T con,ø = 590 °C t = 40 min. con,ø = 590 °C Buckling of beam lower flange

11 400,0°C 980,0°C t = t h 42T con,ø = 645 °C t = 42 min. con,ø = 645 °C Buckling of beam lower flange

12 400,0°C 980,0°C t = t h 44T con,ø = 660 °C t = 44 min. con,ø = 660 °C Buckling of beam lower flange

13 400,0°C 980,0°C t = t h 46T con,ø = 685 °C t = 46 min. con,ø = 685 °C

14 400,0°C 980,0°C t = t h 48T con,ø = 710 °C t = 48 min. con,ø = 710 °C

15 400,0°C 980,0°C t = t h 50T con,ø = 730 °C t = 50 min. con,ø = 730 °C

16 400,0°C 980,0°C t = t h 52T con,ø = 775 °C t = 52 min. con,ø = 775 °C

17 400,0°C 980,0°C t = t h 54T con,ø = 810 °C t = 54 min. con,ø = 810 °C

18 400,0°C 980,0°C t = t h 56T con,ø = 835 °C The maximal temperature of 1088 °C of secondary beam was reached by its lower flange in 57 min. t = 56 min. con,ø = 835 °C

19 400,0°C 980,0°C t = t h 58T con,ø = 855 °C t = 58 min. con,ø = 855 °C

20 400,0°C 980,0°C t = t h 00T con,ø = 880 °C t = 60 min. con,ø = 880 °C

21 400,0°C 980,0°C t = t h 02T con,ø = 900 °C Maximal temperature of fin plate connection 908,3°C was reached in 63 min. t = 62 min. con,ø = 900 °C

22 400,0°C 980,0°C t = t h 04T con,ø = 885 °C t = 64 min. con,ø = 885 °C

23 400,0°C 980,0°C t = t h 06T con,ø = 860 °C t = 66 min. con,ø = 860 °C

24 400,0°C 980,0°C t = t h 08T con,ø = 840 °C t = 68 min. con,ø = 840 °C

25 400,0°C 980,0°C t = t h 10T con,ø = 820 °C t = 70 min. con,ø = 820 °C

26 400,0°C 980,0°C t = t h 12T con,ø = 800 °C t = 72 min. con,ø = 800 °C

27 400,0°C 980,0°C t = t h 14T con,ø = 790 °C t = 74 min. con,ø = 790 °C

28 400,0°C 980,0°C t = t h 16T con,ø = 770 °C t = 76 min. con,ø = 770 °C

29 400,0°C 980,0°C t = t h 18T con,ø = 755 °C t = 78 min. con,ø = 775 °C

30 400,0°C 980,0°C t = t h 20T con,ø = 745 °C t = 80 min. con,ø = 745 °C

31 400,0°C 980,0°C t = t h 22T con,ø = 740 °C t = 82 min. con,ø = 740 °C

32 400,0°C 980,0°C t = t h 24T con,ø = 730 °C t = 84 min. con,ø = 730 °C

33 400,0°C 980,0°C t = t h 26T con,ø = 720 °C t = 76 min. con,ø = 720 °C

34 400,0°C 980,0°C t = t h 28T con,ø = 710 °C t = 78 min. con,ø = 710 °C

35 400,0°C 980,0°C t = t h 30T con,ø = 690 °C t = 90 min. con,ø = 690 °C

36 400,0°C 980,0°C t = t h 32T con,ø = 680 °C t = 92 min. con,ø = 680 °C

37 400,0°C 980,0°C t = t h 34T con,ø = 670 °C t = 94 min. con,ø = 670 °C

38 400,0°C 980,0°C t = t h 36T con,ø = 650 °C t = 96 min. con,ø = 650 °C

39 400,0°C 980,0°C t = t h 38T con,ø = 640 °C t = 98 min. con,ø = 640 °C

40 400,0°C 980,0°C t = t h 40T con,ø = 635 °C t = 100 min. con,ø = 635 °C The connection is warmer compare to the connected beam by cooling of the structure, but never reached the beam maximal temperature.

41 400,0°C 980,0°C t = t h 42T con,ø = 620 °C t = 102 min. con,ø = 620 °C The connection is warmer compare to the connected beam by cooling of the structure, but never reached the beam maximal temperature.

42 400,0°C 980,0°C t = t h 44T con,ø = 600 °C t = 104 min. con,ø = 600 °C The connection is warmer compare to the connected beam by cooling of the structure, but never reached the beam maximal temperature.

43 400,0°C 980,0°C t = t h 46T con,ø = 585 °C t = 106 min. con,ø = 585 °C

44 400,0°C 980,0°C t = t h 48T con,ø = 560 °C t = 108 min. con,ø = 560 °C

45 400,0°C 980,0°C t = t h 50T con,ø = 540 °C t = 110 min. con,ø = 540 °C

46 400,0°C 980,0°C t = t h 52T con,ø = 520 °C t = 112 min. con,ø = 520 °C

47 400,0°C 980,0°C t = t h 54T con,ø = 505 °C t = 114 min. con,ø = 505 °C

48 400,0°C 980,0°C t = t h 56T con,ø = 485 °C t = 116 min. con,ø = 585 °C

49 400,0°C 980,0°C t = t h 58T con,ø = 470 °C t = 118 min. con,ø = 470 °C

50 400,0°C 980,0°C t = t h 00T con,ø = 450 °C t = 120 min. con,ø = 450 °C

51 400,0°C 980,0°C t = t h 02T con,ø = 435 °C t = 122 min. con,ø = 435 °C

52 400,0°C 980,0°C t = t h 04T con,ø = 420 °C After two hours of a natural fire is temperature of the structure under 400°C. t = 124 min. con,ø = 420 °C

53 Fin plate connection after the experiment

54 Temperature Differences Measured by Thermocouples Maximal temperature of fin plate by 4th bolt 908 °C in 63 min.

55 Measured 908 °C in 63 min.; predicted 878 °C in 53 min. Prediction by prEN : 2004

56 Pašek J., Svoboda J., Wald F. Technical University in Prague has produced this lesson with the support of the EU Fifth Framework project No. CV 5535 Tensile membrane action and robustness of structural steel joints under natural fire. Thank you for your Attention