Micromegas-TPC development for rare event detection

Slides:



Advertisements
Similar presentations
MICROMEGAS per l’upgrade delle Muon Chambers di ATLAS per SLHC
Advertisements

Applications of Nuclear Physics Applications of Nuclear Physics (Instrumentation) Dr Andy Boston Frontiers of gamma-ray spectroscopy.
GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
Results of a R&D Micromegas Bulk Results of a R&D S. Aune a, M. Boyer a, A. Delbart a, R. De Oliveira b, A. Giganon a, Y. Giomataris a A CEA / DAPNIA,
EMU Meeting, Houston, Jan , 2002O.Prokofiev 1 EMU CMS Meeting O.Prokofiev Fermilab Summary of the CSC aging tests Copy of slides prepared for EMU.
SNOLAB and EXO David Sinclair SNOLAB Workshop August 2005.
T. Lux. 13/12/ Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating.
Amsterdam Master of Physics symposium 2008 Lucie de Nooij Supervisor: Jan Timmermans Mini TPCs to the max.
An electron has a velocity of {image} in the positive x direction at a point where the magnetic field has the components {image} {image} and {image} What.
A Brief Report on Characteristic Studies of Micromegas Applied Nuclear Physics Division Saha Institute of Nuclear Physics, Kolkata, India RD51 Collaboration.
An APD Readout for EL Detectors Thorsten Lux IFAE, Barcelona, Spain.
Developments of micromegas detector at CERN/Saclay
Results from first tests of TRD prototypes for CBM DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main.
Light and charge collection with a new Micromegas-TPC Light and charge collection with a new Micromegas-TPC Leila Ounalli Neuchâtel University CHIPP workshop.
Drift velocity Adding polyatomic molecules (e.g. CH4 or CO2) to noble gases reduces electron instantaneous velocity; this cools electrons to a region where.
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
E-field calculations for the TPC/HBD N. Smirnov Upgrade Working Group Meeting 05/13/03, BNL.
Prototype TPC Tests C. Lu 12/9/98 V = 0. Gas gain test for the low pressure chamber The chamber is constructed with the following parameters: D anode.
Proportional Counters
D. Peterson, “ILC Detector Work”, Cornell Group Meeting, 4-October ILC Detector Work This project is supported by the US National Science Foundation.
UTA, Jan. 9-11, 2003M. Ronan LC-TPC R&D1 LC-TPC R&D GEM, MicroMEGAS and MWPC techniquesGEM, MicroMEGAS and MWPC techniques Preliminary studiesPreliminary.
PRODUCTION and CERTIFICATION of Multi Wires Proportional Chambers for the LHCb Muon System at CERN K.Mair for the LHCb Muon Group CERN* Poster anlässlich.
PANDAX Results and Outlook
Combined WIMP and 0-  decay searches with High-pressure 136 Xe Gas TPC Dave Nygren LBNL.
P. Gorodetzky PCC-Collège de France XIII ISVHECRI Pylos September NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
Status of PNPI R&D for choice of the MUCH tracking base detector (this work is supported by INTAS) ■ Introduction ■ MICROMEGAS ■ GEM ■ MICROMEGAS+GEM ■
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Status of DRIFT II Ed Daw representing the DRIFT collaboration: Univ. of Sheffield, Univ. of Edinburgh, Occidental College, Univ. of New Mexico Overview.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Applications of Micro-TPC to Dark Matter Search 1. WIMP signatures 2. Performance of the Micro-TPC 3. WIMP-wind measurement 4. Future works 5. Conclusions.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Sheffield : R. Hollingworth, D. Tovey R.A.L. : R.Luscher Development of Micromegas charge readout for two phase Xenon based Dark Matter detectors Contents:
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
Experimental and Numerical studies on Bulk Micromegas SINP group in RD51 Applied Nuclear Physics Division Saha Institute of Nuclear Physics Kolkata, West.
Diego Gonzalez Diaz (Univ. Zaragoza and CERN)
15th RD51 Collaboration Meeting 18 – 20 March 2015 CERN On the way to sub-100ps timing with Micromegas T. Papaevangelou IRFU / CEA Saclay.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
Takeshi Fujiwara, Hiroyuki Takahashi, Kaoru Fujita, Naoko Iyomoto Department of Nuclear Engineering and Management, The University of Tokyo, JAPAN Study.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
Xe-based detectors: recent work at Coimbra C.A.N.Conde, A.D. Stauffer, T.H.V.T.Dias, F.P.Santos, F.I.G.M.Borges, L.M.N.Távora, R.M.C. da Silva, J.Barata,
29-Feb-16S.Movchan Straw status1 Choose of FEE chip for NA62 straw detector Beam tests results 2007 and 2008 (Straw spatial resolution) Comparison FEE.
1 MPGD2009 Advancements of labelled radio-pharmaceutics imaging with the PIM-MPGD J. Donnard a, N.Arlicot b,
Development of high resolution Micro-Pattern Gas Detectors (MPGD) with wide readout pads Madhu Dixit TRIUMF & Carleton University Saha Institute for Nuclear.
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
ZEPLIN III Position Sensitivity PSD7, 12 th to 17 th September 2005, Liverpool, UK Alexandre Lindote LIP - Coimbra, Portugal On behalf of the ZEPLIN/UKDM.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Endplate meeting – September 13, Gas issues for a Micromegas TPC for the Future Linear Collider David Attié D. Burke; P. Colas;
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
Energy resolution results for Microbulk MICROMEGAS at high energy and pressure. Alfredo Tomás Alquézar Universidad de Zaragoza on behalf of the collaboration.
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
Max Chefdeville, NIKHEF, Amsterdam
GEM TPC Resolution from Charge Dispersion*
MPGD 2013 Conference,Zaragoza July 1-4, 2012
Numerical simulations on single mask conical GEMs
CsI Compton Veto Detector for A low Mass WIMP Experiment
3g Medical Imaging R&D with liquid xenon Compton telescope
TPC Paul Colas Technical meeting, Lyon.
The MICROMEGAS detector in CAST
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
Presentation transcript:

Micromegas-TPC development for rare event detection 3rd symposium on Large TPCs for low energy rare event detection, Paris, 11-12 December 2006. Leila Ounalli Neuchâtel University

Restrictive conditions for rare event detection Big detector mass (high pressure), Radioactive background as low as possible (underground laboratory + radio-pure components), Good energy resolution (FWHM), High gas gain (collected charge / initial charge).

The eye and the retina Cones Sticks Light Optic nerve Brain (analyze, classify, memorize)

The TPC and Micromegas spacers Dave Nygren (1970) Woven wires 1mm spacers Cathode Grid Amplification (> 50 m) Micromesh Ed ~ 200V/cm Ea ~ 40-100kV/cm Anode Conversion + Drift (gamma, RX, UV …) e- Dave Nygren (1970) Woven wires http://www.bopp.ch/ Micromegas « Compact » analyze, classify, memorize.

The Neuchâtel mini-TPC miniTPC(10X20cm) The source position. max of count @ dC-g=18cm Edrift The drift electric field choice: Ed= 200 V.cm-1.bar-1 The gap dimension (dgrille-anode ): (75-100-250 µm) High pressure + low voltages The quencher choice and %: - Xe + (CF4, isobutene): double beta decay - CF4 + (Xe, Ar): solar n @ low E

Why we replace the MWPC by the Micromegas micro-pattern?

Charge deviation from their trajectories. (RE + ξ ) bad (50% @ 6 keV) http://www.bopp.ch Contours of V near the amplification gap x10-3 Y-Axis[cm] X-Axis[cm] Comparison with MWPC’s Y-Axis[cm] X-Axis[cm] Circular form: Charge deviation from their trajectories. (RE + ξ ) bad (50% @ 6 keV) rectilinear: E uniform: // of electrons. (RE + ξ ) good (35% @ 6keV with 1 bar of CF4)

How to operate the Micromegas-TPC at higher pressures? The increase of the gap amplification permits a good charge collection at high pressure C G Amplification (75, 250) m Micromesh A Conversion + Drift

Why we choose a gap of 250 µm? 250 µm 104 @ 4 bar 75 µm

How to improve the charge collection in Xe? A small CF4 addition is sufficient

CF4 is the best additive for Xe ← improves the charge collection. P: 1.00 atm, Ed=200 V.cm-1.atm-1, Gap: 100 µm ■ Xe-CF4 (2, 5, 10, 50%) ▲ Xe-isobutene (2%) CF4 addition: increases the electron drift velocity in Xe. reduces longitudinal and transversal diffusions.

Optimal parameters Ed= 200 V.cm-1.atm-1. Gap: 250 µm. Gas: Xe(98)CF4(2) Make preliminary tests in the mini-TPC of Neuchâtel (241Am).

The Xe(98)CF4(2) gain and the energy resolution @ 60 keV at different pressures 1.05 atm 2.01 atm 3.00 atm 4.00 atm Gas: Xe(98)CF4(2) Ed= 200V.cm-1.atm-1 Source: 241Am (37kBq) ▲ 8.05 keV Cu-Kα 29.779 keV Xe-Kα 103

Pulse height spectra of 241Am source in Xe(98)CF4(2) with a Micromegas-TPC 63% @ 8 keV G ≈ 1340 19% @ 30 keV G ≈ 1670 36% @ 30 keV 68% @ 8 keV Cu-Kα Xe-Kα Pulser 1 bar 3 bar

Radio-pure and radio-active components

The Germanium detector : gamma spectrometry Ge (400 cm3) “Vue-des-Alpes”

Copper (TPC+rings+cathode). Glue (araldite). Grid (Stainless steel). Kevlar Resin-epoxy Lead. Copper (TPC+rings+cathode). Glue (araldite). Grid (Stainless steel). insulators (delrin, teflon) Radio-pure 2614 x104 Printed-circuit (resin-epoxy). Resistances (ceramic). Solder (210Pb) Radio-active

Gotthard results

The Gotthard TPC diameter: 50 cm TPC (60X70cm) Micromegas Gap: 250 µm Gotthard-TPC calibration @ low energies (241Am, 133Ba). Estimate the radioactive background of the TPC. - Find the sources of noise: Measure the radioactivity of components using a Ge detector “Vue-des-Alpes”.

The compact Micromegas is tested before being installed

Micromegas (50 cm of diameter): (Am and Ba) sources effect 81 keV (133Ba) 53% @ 60 keV (241Am) 60 keV (241Am) The Compton plateau (133Ba)

The behavior of the background registered in the Gotthard TPC 1 bar of P10 gas 46 keV 3 bar of P10 gas

Conclusions We improve the energy resolution when we replace the MWPC with a Micromegas. Xe(98)CF4(2): ideal for double beta search: high gains, good efficiency, good (energy, spatial and time) resolutions. Increase the gap (amplification): permits a good charge collection in Xe and go up at higher pressures. Micromegas in compact: (50 cm) showed high efficiency and good energy resolution.