Objectives Use length and midpoint of a segment.

Slides:



Advertisements
Similar presentations
Essential Questions How do I use length and midpoint of a segment?
Advertisements

Warm Up Simplify – (–3) 2. –1 – (–13) 3. |–7 – 1|
Definitions and Postulates
Warm Up 1. Find CD Find the coordinate of the midpoint of CD. –2.
Chapter measuring and constructing segments
Warm Up Simplify. 1.7 – (–3)2. –1 – (–13)3. |–7 – 1| Solve each equation. 4. 2x + 3 = 9x – x = 4x – 5 6. How many numbers are there between and ?
1.3 Key Concepts.
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
In the skateboard design, VW bisects XY at point T, and XT = 39.9 cm. Find XY. Skateboard SOLUTION EXAMPLE 1 Find segment lengths Point T is the midpoint.
1.1 Exit Ticket: Part 1 Answers
Entry Task 1. Graph A (–2, 3) and B (1, 0). 2. Find CD. Write expression for it.
Day Problems 9/12/12 1.Name the intersection of plane AEH and plane GHE. 2.What plane contains points B, F, and C? 3.What plane contains points E, F, and.
Success Criteria: I can use special geometric tools to make a figure that is congruent to an original figure without measuring I can apply this method.
CHAPTER 1: Tools of Geometry
1 1-5 Measuring Segments Find the distance between two points using the Ruler Postulate Determine the length of a segment using the Segment Addition Postulate.
+ Objective: to measure segments and add segment lengths DO NOW: EVALUATE. Plot each point on a coordinate plane. 1.I -15 I 2.I 7 I 3.I I 4.I -12-(-2)
Holt Geometry 1-2&3 Measuring and Constructing Segments and Angles Warm Up Solve
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Holt McDougal Geometry 1-2 Measuring and Constructing Segments Drill: Tuesday, 9/3 Simplify. 1. –1 – (–13) 2. |–7 – 1| Solve each equation. 3. 2x + 3 =
1-3 Measuring and Constructing Segments Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Objectives Use length and midpoint of a segment.
Warm Up Exercise To solve write equation: x-3 + x+4 = 4x-15.
Do Now Draw and label a figure for each relationship:
1.2 Measuring and Constructing Segments
Finding Segment Lengths Absolute value of their difference.
1-2 Measuring and Constructing Segments Lesson Presentation
1) plane BCD, plane BED, or plane ECD 1) plane BCD, plane BED, or plane ECD 2) BD, BC, BE, or BE 2) BD, BC, BE, or BE 3) EC, BC, or BE 3) EC, BC, or BE.
1 1-5 Measuring Segments Find the distance between two points using the Ruler Postulate Determine the length of a segment using the Segment Addition Postulate.
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Holt McDougal Geometry 1-2 Measuring and Constructing Segments 1-2 Measuring and Constructing Segments Holt Geometry Warm Up Warm Up Lesson Presentation.
Geometry CH 1-3 Measuring angles and Segments End of Lecture / Start of Lecture mark.
Schema: Read page 39 Do # Segment and Angle Measurement.
Success Criteria:  I can use number operations to find and compare lengths  I can use the ruler and segment addition postulate to reason about length.
F RIDAY, A UGUST 8 TH Complete warm up on separate sheet of paper 1. 2x + 3 = 9x – x = 4x – 5.
WARM UP Simplify 1.7 – (–3) 1.–1 – (–13) 2. |–7 – 1| Solve each equation. 4. 2x + 3 = 9x – x = 4x – 5 6. How many numbers are there between and ?
1-3 Segments, Rays, and Distance
Holt McDougal Geometry 1-2 Measuring and Constructing Segments 1-2 Measuring and Constructing Segments Holt Geometry Warm Up Warm Up Lesson Presentation.
Holt Geometry 1-1 Understanding Points, Lines, and Planes 1-1 Unit 1 – Introduction and Construction Holt Geometry Lesson Presentation Lesson Presentation.
1-3 Measuring segments.
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Measuring and Constructing Segments
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
WARM UP 1.5 On desk!.
Drill: Friday 8/ What are parallel lines?
1. Find a point between A(–3, 5) and B(7, 5).
Daily Warm up Turn in “What Shape is Your Name”
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Teacher Note When talking about the midpoint, mention that it BISECTS the line segment.
Linear Measure Line Segment - A measurable part of a line that consists of two points, called the endpoints, and all the points between them. A segment.
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Chapter 1: Tools of Geometry
Drill: Tuesday, 9/6 Simplify – (–3) 2. –1 – (–13) 3. |–7 – 1|
1.2 Measuring and Constructing Segments
1-2 Measuring & Constructing Segments
Drill: Tuesday, 9/3 Simplify. 1. –1 – (–13) 2. |–7 – 1|
Geom: 1-2 Measuring and Constructing Segments
1-2 Measuring and Constructing Segments Are You Ready?
1-4 Measuring Segments (part 1).
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Warm Up Solve each equation. 1. 2x – 6 = 7x – /4 x – 6 = 220
1-2 Vocabulary coordinate distance length construction between
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Measuring and Constructing Segments
Pearson Unit 1 Topic 1: Tools of Geometry 1-2: Measuring Segments Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Chapter 1 Section 2 Measuring and Constructing Segments
Objectives Use length and midpoint of a segment.
Presentation transcript:

Objectives Use length and midpoint of a segment. Construct midpoints and congruent segments.

The distance between any two points is the absolute value of the difference of the coordinates. If the coordinates of points A and B are a and b, then the distance between A and B is |a – b| or |b – a|. The distance between A and B is also called the length of AB, or AB. AB = |a – b| or |b - a| A a B b

Example 1: Finding the Length of a Segment Find each length. A. BC B. AC BC = |1 – 3| AC = |–2 – 3| = |1 – 3| = |– 5| = 2 = 5

Check It Out! Example 1 Find each length. a. XY b. XZ

Congruent segments are segments that have the same length Congruent segments are segments that have the same length. In the diagram, PQ = RS, so you can write PQ  RS. This is read as “segment PQ is congruent to segment RS.” Tick marks are used in a figure to show congruent segments.

You can make a sketch or measure and draw a segment You can make a sketch or measure and draw a segment. These may not be exact. A construction is a way of creating a figure that is more precise. One way to make a geometric construction is to use a compass and straightedge.

Example 2: Copying a Segment Sketch, draw, and construct a segment congruent to MN. Step 1 Estimate and sketch. Estimate the length of MN and sketch PQ approximately the same length. P Q

Example 2 Continued Sketch, draw, and construct a segment congruent to MN. Step 2 Measure and draw. Use a ruler to measure MN. MN appears to be 3.5 in. Use a ruler to draw XY to have length 3.5 in. X Y

Example 2 Continued Sketch, draw, and construct a segment congruent to MN. Step 3 Construct and compare. Use a compass and straightedge to construct ST congruent to MN. A ruler shows that PQ and XY are approximately the same length as MN, but ST is precisely the same length.

In order for you to say that a point B is between two points A and C, all three points must lie on the same line, and AB + BC = AC.

Example 3B: Using the Segment Addition Postulate M is between N and O. Find NO. NM + MO = NO Seg. Add. Postulate 17 + (3x – 5) = 5x + 2 Substitute the given values 3x + 12 = 5x + 2 Simplify. – 2 – 2 Subtract 2 from both sides. 3x + 10 = 5x Simplify. –3x –3x Subtract 3x from both sides. 10 = 2x Divide both sides by 2. 2 5 = x

Example 3B Continued M is between N and O. Find NO. NO = 5x + 2 = 5(5) + 2 Substitute 5 for x. = 27 Simplify.

The midpoint M of AB is the point that bisects, or divides, the segment into two congruent segments. If M is the midpoint of AB, then AM = MB. So if AB = 6, then AM = 3 and MB = 3.

Example 5: Using Midpoints to Find Lengths D is the midpoint of EF, ED = 4x + 6, and DF = 7x – 9. Find ED, DF, and EF. E D 4x + 6 7x – 9 F Step 1 Solve for x. ED = DF D is the mdpt. of EF. 4x + 6 = 7x – 9 Substitute 4x + 6 for ED and 7x – 9 for DF. –4x –4x Subtract 4x from both sides. 6 = 3x – 9 Simplify. +9 + 9 Add 9 to both sides. 15 = 3x Simplify.

Example 5 Continued D is the midpoint of EF, ED = 4x + 6, and DF = 7x – 9. Find ED, DF, and EF. E D 4x + 6 7x – 9 F 3 3 15 3x = Divide both sides by 3. x = 5 Simplify.

Example 5 Continued D is the midpoint of EF, ED = 4x + 6, and DF = 7x – 9. Find ED, DF, and EF. E D 4x + 6 7x – 9 F Step 2 Find ED, DF, and EF. ED = 4x + 6 DF = 7x – 9 EF = ED + DF = 4(5) + 6 = 7(5) – 9 = 26 + 26 = 26 = 26 = 52