Andrés Jara-Oseguera, León D. Islas  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Fig Topology of TRPM8 S4 helix. The model shows the localization of charged amino acids in the TRPM8 S4 segment. F839 and T848 correspond to voltage-sensing.
Advertisements

Volume 101, Issue 7, Pages (October 2011)
Molecular Determinants of U-Type Inactivation in Kv2.1 Channels
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Kinetic Hysteresis in Collagen Folding
Thomas G. Anderson, Harden M. McConnell  Biophysical Journal 
Volume 109, Issue 2, Pages (July 2015)
A Biophysical Model of Electrical Activity in Human β-Cells
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Precision and Variability in Bacterial Temperature Sensing
Volume 84, Issue 6, Pages (June 2003)
Volume 110, Issue 10, Pages (May 2016)
Volume 101, Issue 4, Pages (August 2011)
Differential Modulation of Cardiac Ca2+ Channel Gating by β-Subunits
Santosh K. Dasika, Kalyan C. Vinnakota, Daniel A. Beard 
Volume 98, Issue 11, Pages (June 2010)
Volume 96, Issue 11, Pages (June 2009)
Model Studies of the Dynamics of Bacterial Flagellar Motors
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 111, Issue 2, Pages (July 2016)
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Volume 101, Issue 2, Pages (July 2011)
Kirstin A. Walther, Jasna Brujić, Hongbin Li, Julio M. Fernández 
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
Physiological Pathway of Magnesium Influx in Rat Ventricular Myocytes
Volume 96, Issue 2, Pages (January 2009)
Volume 99, Issue 10, Pages (November 2010)
Volume 96, Issue 10, Pages (May 2009)
Kinetic and Energetic Analysis of Thermally Activated TRPV1 Channels
Volume 113, Issue 4, Pages (August 2017)
Tzur Paldi, Michael Gurevitz  Biophysical Journal 
Volume 84, Issue 6, Pages (June 2003)
Stationary Gating of GluN1/GluN2B Receptors in Intact Membrane Patches
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
Volume 103, Issue 2, Pages (July 2012)
Volume 99, Issue 1, Pages (July 2010)
Volume 96, Issue 11, Pages (June 2009)
Kinetic Hysteresis in Collagen Folding
Volume 105, Issue 1, Pages (July 2013)
Alexander Peyser, Dirk Gillespie, Roland Roth, Wolfgang Nonner 
Volume 110, Issue 7, Pages (April 2016)
Volume 85, Issue 6, Pages (December 2003)
Volume 100, Issue 1, Pages (January 2011)
Samuel J. Goodchild, Logan C. Macdonald, David Fedida 
Thermodynamic Characterization of the Unfolding of the Prion Protein
Volume 101, Issue 4, Pages (August 2011)
Volume 108, Issue 1, Pages (January 2015)
Effects of Temperature on Heteromeric Kv11.1a/1b and Kv11.3 Channels
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Mathematical Modeling of the Heat-Shock Response in HeLa Cells
Phosphatase Specificity and Pathway Insulation in Signaling Networks
Volume 101, Issue 7, Pages (October 2011)
Don E. Burgess, Oscar Crawford, Brian P. Delisle, Jonathan Satin 
Volume 99, Issue 11, Pages (December 2010)
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Bending and Puncturing the Influenza Lipid Envelope
Steady-State Differential Dose Response in Biological Systems
Christina Karatzaferi, Marc K. Chinn, Roger Cooke  Biophysical Journal 
Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2
Main Phase Transitions in Supported Lipid Single-Bilayer
Antonella Gradogna, Michael Pusch  Biophysical Journal 
Volume 99, Issue 11, Pages (December 2010)
S. Rüdiger, Ch. Nagaiah, G. Warnecke, J.W. Shuai  Biophysical Journal 
Kinetic Folding Mechanism of Erythropoietin
Paolo Mereghetti, Razif R. Gabdoulline, Rebecca C. Wade 
David Naranjo, Hua Wen, Paul Brehm  Biophysical Journal 
Malin Persson, Elina Bengtsson, Lasse ten Siethoff, Alf Månsson 
Volume 99, Issue 1, Pages (July 2010)
Jérémie Barral, Frank Jülicher, Pascal Martin  Biophysical Journal 
Presentation transcript:

The Role of Allosteric Coupling on Thermal Activation of Thermo-TRP Channels  Andrés Jara-Oseguera, León D. Islas  Biophysical Journal  Volume 104, Issue 10, Pages 2160-2169 (May 2013) DOI: 10.1016/j.bpj.2013.03.055 Copyright © 2013 Biophysical Society Terms and Conditions

Figure 1 Allosteric model for temperature- and voltage-activation of thermo-TRP channels. (Solid symbols) Channel activity with deactivated voltage sensors; (shaded symbols) voltage-sensor activation and channel transitions with activated voltage sensors. L is the intrinsic gating equilibrium constant. The activation/deactivation equilibrium constants for the temperature- (J) and voltage-sensors (K) are given by J(T)=exp[−(ΔHo−TΔSo)/RT] and K(V)=K(0)exp[−zFV/RT], respectively. C, D, and E are allosteric coupling constants between channel gating and the temperature- or voltage sensors or between the two sensors, respectively. Biophysical Journal 2013 104, 2160-2169DOI: (10.1016/j.bpj.2013.03.055) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 2 Experimental TRPV1 and TRPM8 data can be described by assuming inverse coupling in an allosteric model. (A) TRPV1 open probability versus voltage curves at the indicated temperatures. (Black curves) Fits from the eight-state model with the parameters: ΔHo = 91.13 kcal mol−1, ΔSo = 0.295 kcal mol−1 K−1, L = 2.6 × 10−3, K(0) = 3.17 × 10−2, Z = 0.9, C = 6.04, D = 260, E = 0.92; and T = 298 K (25°C), 305 K (32°C), or 316 K (43°C). Group data are shown as mean ± SE (n = 5–18). (B) TRPM8 open probability versus voltage curves at various temperatures obtained from published data (4). (Black curves) Fits from the eight-state model with the parameters: ΔHo = 91 kcal mol−1, ΔSo = 0.317 kcal mol−1 K−1, L = 18 × 10−3, K(0) = 0.15, Z = 0.6, C = 0.022, E = 1.6, and D = 478. (C) Po-T landscape calculated from the portion of Fig. 1 (highlighted in black), for different values of C (twofold multiplicative increments), L = 3 or 0.2, ΔHo = 90 kcal mol−1, and ΔSo = 0.294 kcal mol−1 K−1. Po-T curves (highlighted with black circles) correspond to C = 2 and C = 1.68 × 104. (D) Po-T curves calculated from the four-state subscheme (Fig. 1, solid characters) with ΔHo = 90 kcal mol−1 and ΔSo values of 0.31 (blue) or 0.28 (red) kcal mol−1 K−1. Biophysical Journal 2013 104, 2160-2169DOI: (10.1016/j.bpj.2013.03.055) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 3 Switching from heating to cooling-mediated channel activation through inverse allosteric coupling. (A) Open probability landscapes at −60 mV obtained by calculating Po at different temperatures and values for the allosteric coupling constant C using the eight-state model with two sets of parameters (blue and red surfaces). The increments in the varied parameters were additive for T (ΔT = 2°C) and multiplicative for C (factor of 1.3). (Red surface) Parameters obtained from fits of the eight-state model to TRPV1 data; also indicated in the legend in Fig. 1 A. (Blue surface) Parameters obtained from fits of the eight-state model to published TRPM8 data; also indicated in Fig. 2 B. (B) Same as in panel A with data calculated at +120 mV. Biophysical Journal 2013 104, 2160-2169DOI: (10.1016/j.bpj.2013.03.055) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 4 A temperature-dependent allosteric coupling constant C is sufficient to enable heating- and cooling-mediated channel activation with the same set of parameters. (A) Po-T landscape calculated from the four-state subscheme (Fig. 1, solid characters) and additive increments in ΔHoC and ΔSoC, keeping a ΔHoC/ΔSoC ratio of 320 K, ΔHo = 80 kcal mol−1, ΔSo = 0.280 kcal mol−1 K−1, and L = 20. C is calculated for each value of ΔHoC, ΔSoC, and T from Eq. 6. (B) Po-T landscape calculated from the eight-state model for different values for the temperature-dependent constant C, obtained by additively incrementing T, ΔHoC, and ΔSoC, with constant ΔHoC/ΔSoC = 340 K. The parameters that were kept unchanged are: ΔHo = 80 kcal mol−1, ΔSo = 0.270 kcal mol−1 K−1, L = 1 × 10−3, K(0) = 0.05, Z = 0.8, E = 10, D = 1 × 105, and V = 150 mV. The increase in ΔHoC/ΔSoC with respect to panel A causes a right-shift in the heat-activated portion of the curve (see Fig. 6). The ΔHo/ΔSo ratio shifts the cold-activation threshold. Biophysical Journal 2013 104, 2160-2169DOI: (10.1016/j.bpj.2013.03.055) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 5 Effects of ΔHoc on the change in open probability by both increasing and decreasing temperatures for a given set of parameters. Open probability landscapes calculated at different voltages and temperatures for two sets of values for ΔHoC and ΔSoC using the eight-state model (Fig. 1): ΔHoC = 45 kcal mol−1 and ΔSoC = 0.130 kcal mol−1 K−1 (blue surface) or ΔHoC = 11.5 kcal mol−1 and ΔSoC = 0.029 kcal mol−1 K−1 (black surface). Temperature was additively incremented by 4°C per step, while voltage increments were of 10 mV. The other parameters used are: ΔHo = 90.5 kcal mol−1, ΔSo = 0.313 kcal mol−1 K−1, L = 16 × 10−3, K(0) = 0.16, Z = 0.56, E = 1.42, and D = 476. These parameters were obtained by fitting Eq. 4 with a temperature-dependent allosteric constant C to the TRPM8 data reported in Brauchi et al. (4) and shown in Fig. 2 B. Biophysical Journal 2013 104, 2160-2169DOI: (10.1016/j.bpj.2013.03.055) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 6 In the four-state model with temperature-dependent allosteric coupling constant C, a 1.09-fold increase in the ΔHoC/ΔSoC ratio leads to heating-mediated activation in an experimentally inaccessible temperature range. Po-T landscape calculated from the four-state subscheme (Fig. 1, solid characters) and additive increments in ΔHoC and ΔSoC, keeping a ΔHoC/ΔSoC ratio of 350 K (as compared to ΔHoC/ΔSoC = 320 K in Fig. 4 A). The model’s parameters were: ΔHo = 80 kcal mol−1, ΔSo = 0.280 kcal mol−1 K−1, and L = 20. Biophysical Journal 2013 104, 2160-2169DOI: (10.1016/j.bpj.2013.03.055) Copyright © 2013 Biophysical Society Terms and Conditions