Form and Function in Cell Motility: From Fibroblasts to Keratocytes

Slides:



Advertisements
Similar presentations
The Dynamics and Mechanics of Endothelial Cell Spreading Cynthia A. Reinhart-King, Micah Dembo, Daniel A. Hammer Biophysical Journal Volume 89, Issue 1,
Advertisements

Molecular Model of a Cell Plasma Membrane With an Asymmetric Multicomponent Composition: Water Permeation and Ion Effects Robert Vácha, Max L. Berkowitz,
Yield Strength of Human Erythrocyte Membranes to Impulsive Stretching Fenfang Li, Chon U Chan, Claus Dieter Ohl Biophysical Journal Volume 105, Issue 4,
Cytoskeletal Polymer Networks: Viscoelastic Properties are Determined by the Microscopic Interaction Potential of Cross-links O. Lieleg, K.M. Schmoller,
Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
Cell Traction Forces Direct Fibronectin Matrix Assembly Christopher A. Lemmon, Christopher S. Chen, Lewis H. Romer Biophysical Journal Volume 96, Issue.
Quantifying the Rheological and Hemodynamic Characteristics of Sickle Cell Anemia Huan Lei, George Em Karniadakis Biophysical Journal Volume 102, Issue.
Agarose-Dextran Gels as Synthetic Analogs of Glomerular Basement Membrane: Water Permeability Jeffrey A. White, William M. Deen Biophysical Journal Volume.
Nonlinear Poisson Equation for Heterogeneous Media Langhua Hu, Guo-Wei Wei Biophysical Journal Volume 103, Issue 4, Pages (August 2012) DOI: /j.bpj
Volume 111, Issue 10, Pages (November 2016)
Volume 111, Issue 7, Pages (October 2016)
Multi-Image Colocalization and Its Statistical Significance
Multiparticle Adhesive Dynamics
Volume 104, Issue 8, Pages (April 2013)
Coral A. Vincent, Rosemary Carpenter, Enrico S. Coen  Current Biology 
Volume 109, Issue 8, Pages (October 2015)
Velocity Fields in a Collectively Migrating Epithelium
Bipedal Locomotion in Crawling Cells
Unsteady Motion, Finite Reynolds Numbers, and Wall Effect on Vorticella convallaria Contribute Contraction Force Greater than the Stokes Drag  Sangjin.
Volume 111, Issue 12, Pages (December 2016)
Volume 103, Issue 9, Pages (November 2012)
Volume 92, Issue 8, Pages (April 2007)
Volume 105, Issue 2, Pages (July 2013)
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Quantifying Cell Adhesion through Impingement of a Controlled Microjet
Electrodiffusion Models of Neurons and Extracellular Space Using the Poisson-Nernst- Planck Equations—Numerical Simulation of the Intra- and Extracellular.
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Volume 109, Issue 5, Pages (September 2015)
Volume 113, Issue 6, Pages (September 2017)
Volume 114, Issue 5, Pages (March 2018)
OpenRBC: A Fast Simulator of Red Blood Cells at Protein Resolution
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Traction Forces of Neutrophils Migrating on Compliant Substrates
Alex Mogilner, Leah Edelstein-Keshet  Biophysical Journal 
Christina Vasalou, Erik D. Herzog, Michael A. Henson 
Volume 113, Issue 11, Pages (December 2017)
Jan Ribbe, Berenike Maier  Biophysical Journal 
Volume 111, Issue 10, Pages (November 2016)
Power Dissipation in the Subtectorial Space of the Mammalian Cochlea Is Modulated by Inner Hair Cell Stereocilia  Srdjan Prodanovic, Sheryl Gracewski,
Volume 100, Issue 11, Pages (June 2011)
Volume 96, Issue 8, Pages (April 2009)
Strongly Accelerated Margination of Active Particles in Blood Flow
Statistics of Active Transport in Xenopus Melanophores Cells
Hung-Yu Chang, Xuejin Li, George Em Karniadakis  Biophysical Journal 
On the Quantification of Cellular Velocity Fields
Volume 105, Issue 10, Pages (November 2013)
Volume 97, Issue 5, Pages (September 2009)
Felix Ruhnow, David Zwicker, Stefan Diez  Biophysical Journal 
Leukocyte Rolling on P-Selectin: A Three-Dimensional Numerical Study of the Effect of Cytoplasmic Viscosity  Damir B. Khismatullin, George A. Truskey 
Adam Sokolow, Yusuke Toyama, Daniel P. Kiehart, Glenn S. Edwards 
Multi-Image Colocalization and Its Statistical Significance
Volume 97, Issue 7, Pages (October 2009)
Nobuhiko Watari, Ronald G. Larson  Biophysical Journal 
Khaled Khairy, William Lemon, Fernando Amat, Philipp J. Keller 
Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers  Semen Yesylevskyy, Siewert-Jan.
Volume 105, Issue 10, Pages (November 2013)
John E. Pickard, Klaus Ley  Biophysical Journal 
Volume 97, Issue 1, Pages (July 2009)
Actin-Myosin Viscoelastic Flow in the Keratocyte Lamellipod
Plasmolysis and Cell Shape Depend on Solute Outer-Membrane Permeability during Hyperosmotic Shock in E. coli  Teuta Pilizota, Joshua W. Shaevitz  Biophysical.
The Mechanism of Phagocytosis: Two Stages of Engulfment
Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2
Phagocytosis Dynamics Depends on Target Shape
Systems Biophysics: Multiscale Biophysical Modeling of Organ Systems
Mechanosensitive Adhesion Explains Stepping Motility in Amoeboid Cells
A New Angle on Microscopic Suspension Feeders near Boundaries
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Volume 108, Issue 7, Pages (April 2015)
Dynamics of Snake-like Swarming Behavior of Vibrio alginolyticus
Laurdan Fluorescence Lifetime Discriminates Cholesterol Content from Changes in Fluidity in Living Cell Membranes  Ottavia Golfetto, Elizabeth Hinde,
Presentation transcript:

Form and Function in Cell Motility: From Fibroblasts to Keratocytes Marc Herant, Micah Dembo  Biophysical Journal  Volume 98, Issue 8, Pages 1408-1417 (April 2010) DOI: 10.1016/j.bpj.2009.12.4303 Copyright © 2010 Biophysical Society Terms and Conditions

Figure 1 Initial flattening of a model cell from a hemisphere into a pancake shape (100 s) shown on the left. On the right, cytoskeletal density and velocity field in the flattened model cell (scale from 0 to 2% volume fraction; top-right arrow, 0.1 μm s−1). See also Movie S1 and Movie S3. Biophysical Journal 2010 98, 1408-1417DOI: (10.1016/j.bpj.2009.12.4303) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 2 A model fibroblast at 320 s (top) and 385 s (bottom). Left panels show the ventral cytoskeletal volume fraction (scale from 0 to 2%). Right panels show three-dimensional rendering of the cell surface, surface lines correspond to the computational mesh. See Movie S1 and Movie S2. Biophysical Journal 2010 98, 1408-1417DOI: (10.1016/j.bpj.2009.12.4303) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 3 An unsuccessful model of a keratocyte at 100 s. Distance scale in μm, color represents ventral cytoskeletal volume fraction (scale 0–2%). Biophysical Journal 2010 98, 1408-1417DOI: (10.1016/j.bpj.2009.12.4303) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 4 Hemispherical cell (−100 s) flattened to its equilibrium pancake shape (0 s) by activation of the entire circumference. This is followed by deactivation of half of the circumference gradually leading to a stable gliding shape resembling a keratocyte (10, 50, 200 s). See Movie S3. Biophysical Journal 2010 98, 1408-1417DOI: (10.1016/j.bpj.2009.12.4303) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 5 Ventral cytoskeletal volume fraction for the keratocyte at 0, 10, 50, 150, and 200 s. Distance scale in μm, color scale spans 0–2% volume fraction. Note the decrease in maximum cytoskeletal density between the spread discoid cell and the migrating keratocyte. This is due to the fact that in the keratocyte, the activated leading-edge moves sufficiently fast as to prevent full polymerization of cytoskeleton at a given location. See Movie S4. Biophysical Journal 2010 98, 1408-1417DOI: (10.1016/j.bpj.2009.12.4303) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 6 (Top) Keratocyte cytoskeletal velocity field vn at the midsagittal plane given in the cell frame of reference. Solid line represents the substratum. (Lower left) Dorsal (top-half) and midheight (bottom-half) keratocyte cytoskeletal velocity field in the cell frame. (Lower right) Same as left, but in the laboratory frame. Velocity arrow scale is 0.2 μm s−1. Note that at the membrane boundary, the cytoskeletal flow vn matches the actual motion of the boundary. However, in the interior, cytosolic flow vs is typically forward, so that vn is very different from the average volume flow v =θnvn +θsvs. Biophysical Journal 2010 98, 1408-1417DOI: (10.1016/j.bpj.2009.12.4303) Copyright © 2010 Biophysical Society Terms and Conditions