String Data Structures and Algorithms

Slides:



Advertisements
Similar presentations
Boosting Textual Compression in Optimal Linear Time.
Advertisements

Combinatorial Pattern Matching CS 466 Saurabh Sinha.
Suffix Trees Come of Age in Bioinformatics Algorithms, Applications and Implementations Dan Gusfield, U.C. Davis.
Suffix Trees Construction and Applications João Carreira 2008.
Suffix Trees, Suffix Arrays and Suffix Trays Richard Cole Tsvi Kopelowitz Moshe Lewenstein.
UNIVERSITY OF SOUTH CAROLINA College of Engineering & Information Technology Bioinformatics Algorithms and Data Structures Chapter : k-difference.
Two implementation issues Alphabet size Generalizing to multiple strings.
Suffix Trees Specialized form of keyword trees New ideas –preprocess text T, not pattern P O(m) preprocess time O(n+k) search time –k is number of occurrences.
1 Suffix tree and suffix array techniques for pattern analysis in strings Esko Ukkonen Univ Helsinki Erice School 30 Oct 2005 Modified Alon Itai 2006.
Suffix Trees and Suffix Arrays
Suffix Sorting & Related Algoritmics Martin Farach-Colton Rutgers University USA.
15-853Page : Algorithms in the Real World Suffix Trees.
296.3: Algorithms in the Real World
© 2004 Goodrich, Tamassia Tries1. © 2004 Goodrich, Tamassia Tries2 Preprocessing Strings Preprocessing the pattern speeds up pattern matching queries.
1 Prof. Dr. Th. Ottmann Theory I Algorithm Design and Analysis (12 - Text search: suffix trees)
Suffix Trees Suffix trees Linearized suffix trees Virtual suffix trees Suffix arrays Enhanced suffix arrays Suffix cactus, suffix vectors, …
1 Data structures for Pattern Matching Suffix trees and suffix arrays are a basic data structure in pattern matching Reported by: Olga Sergeeva, Saint.
CSE 746 – Introduction to Bioinformatics Research Project Two methods of DNA Sequencing – Comparing and Intertwining Suffix Trees and De Bruijn Graphs.
21/05/2015Applied Algorithmics - week51 Off-line text search (indexing)  Off-line text search refers to the situation in which a preprocessed digital.
Combinatorial Pattern Matching CS 466 Saurabh Sinha.
1 More Specialized Data Structures String data structures Spatial data structures.
Presented By Dr. Shazzad Hosain Asst. Prof. EECS, NSU Suffix Trees and Their Uses.
Suffix Trees String … any sequence of characters. Substring of string S … string composed of characters i through j, i ate is.
1 Applications of Suffix Trees Charles Yan Exact String Matching |P|=n, |T|=m P and T are both known at the same time Boyer-Moore, or Suffix.
Full-Text Indexing via Burrows-Wheeler Transform Wing-Kai Hon Oct 18, 2006.
Suffix trees and suffix arrays presentation by Haim Kaplan.
Obtaining Provably Good Performance from Suffix Trees in Secondary Storage Pang Ko & Srinivas Aluru Department of Electrical and Computer Engineering Iowa.
Space Efficient Linear Time Construction of Suffix Arrays
Construction of Aho Corasick automaton in Linear time for Integer Alphabets Shiri Dori & Gad M. Landau University of Haifa.
An O(N 2 ) Algorithm for Discovering Optimal Boolean Pattern Pairs Hideo Bannai, Heikki Hyyro, Ayumi Shinohara, Masayuki Takeda, Kenta Nakai and Satoru.
UNIVERSITY OF SOUTH CAROLINA College of Engineering & Information Technology Bioinformatics Algorithms and Data Structures Chapter 12.3: Exclusion Methods.
Building Suffix Trees in O(m) time Weiner had first linear time algorithm in 1973 McCreight developed a more space efficient algorithm in 1976 Ukkonen.
Genome Assembly Charles Yan Fragment Assembly Given a large number of fragments, such as ACC AC AT AC AT GG …, the goal is to figure out the original.
Survey: String Matching with k Mismatches Moshe Lewenstein Bar Ilan University.
1 Exact Set Matching Charles Yan Exact Set Matching Goal: To find all occurrences in text T of any pattern in a set of patterns P={p 1,p 2,…,p.
On the Use of Regular Expressions for Searching Text Charles L.A. Clarke and Gordon V. Cormack Fast Text Searching.
String Matching with k Mismatches Moshe Lewenstein Bar Ilan University Modified by Ariel Rosenfeld.
Improved string matching with k mismatches (The Kangaroo Method) Galil, R. Giancarlo SIGACT News, Vol. 17, No. 4, 1986, pp. 52–54 Original: Moshe Lewenstein.
Tries1. 2 Outline and Reading Standard tries (§9.2.1) Compressed tries (§9.2.2) Suffix tries (§9.2.3)
Suffix trees. Trie A tree representing a set of strings. a b c e e f d b f e g { aeef ad bbfe bbfg c }
Everything is String. Closed Factorization Golnaz Badkobeh 1, Hideo Bannai 2, Keisuke Goto 2, Tomohiro I 2, Costas S. Iliopoulos 3, Shunsuke Inenaga 2,
Comp. Genomics Recitation 3 (week 4) 26/3/2009 Multiple Hypothesis Testing+Suffix Trees Based in part on slides by William Stafford Noble.
Applications of Suffix Trees Dr. Amar Mukherjee CAP 5937 – ST: Bioinformatics University of central Florida.
Suffix Tree 6 Mar MinKoo Seo. Contents  Basic Text Searching  Introduction to Suffix Tree  Suffix Trees and Exact Matching  Longest Common Substring.
Discrete Methods in Mathematical Informatics Kunihiko Sadakane The University of Tokyo
Advanced Data Structures Lecture 8 Mingmin Xie. Agenda Overview Trie Suffix Tree Suffix Array, LCP Construction Applications.
Tries 4/16/2018 8:59 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
COMP9319 Web Data Compression and Search
Succinct Data Structures
Tries 07/28/16 11:04 Text Compression
Tries 5/27/2018 3:08 AM Tries Tries.
COMP9319 Web Data Compression and Search
Two equivalent problems
Tries 9/14/ :13 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
13 Text Processing Hongfei Yan June 1, 2016.
Comparison of large sequences
Strings: Tries, Suffix Trees
String Data Structures and Algorithms: Suffix Trees and Suffix Arrays
Suffix trees.
String Data Structures and Algorithms
Suffix trees and suffix arrays
Tries 2/23/2019 8:29 AM Tries 2/23/2019 8:29 AM Tries.
Suffix Trees String … any sequence of characters.
Tries 2/27/2019 5:37 PM Tries Tries.
Suffix Arrays and Suffix Trees
String Matching with k Mismatches
Strings: Tries, Suffix Trees
Presentation transcript:

String Data Structures and Algorithms David Fernández-Baca UNAM (Mexico) (based on notes by Srinivas Aluru) slightly modified by Benny Chor

BBSI Summer School - Iowa State University Why Strings? Biological sequences can be viewed as strings, or finite series of characters, over an alphabet Σ. There is a wealth of algorithmic theory developed for general strings that we can apply to specific biological problems. February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University Suffix Trees S = M A L A Y A L A M $ 1 2 3 4 5 6 7 8 9 10 A $ M LA YALAM$ AL 5 10 YALAM$ $M $M YALAM$ $ ALAYALAM$ 8 4 7 3 $M YALAM$ 1 9 6 2 February 5, 2019 BBSI Summer School - Iowa State University

Suffix tree properties For a string S of length n, there are n leaves and at most n internal nodes. therefore requires only linear space Each leaf represents a unique suffix. Concatenation of edge labels from root to a leaf spells out the suffix. Each internal node represents a distinct common prefix to at least two suffixes. February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University Edge Encoding S = M A L A Y A L A M $ 1 2 3 4 5 6 7 8 9 10 (2, 2) (10, 10) (3, 4) (5, 10) (1, 1) 10 (3, 4) (5, 10) 5 (5, 10) (9, 10) (2, 10) (10, 10) (9, 10) 8 4 7 3 1 9 (9, 10) (5, 10) 6 2 February 5, 2019 BBSI Summer School - Iowa State University

Näive Suffix Tree Construction 1 MALAYALAM$ 2 ALAYALAM$ 3 LAYALAM$ 4 AYALAM$ 5 YALAM$ 6 ALAM$ 7 LAM$ 8 AM$ 9 M$ 10 $ Before starting: Why exactly do we need this $, which is not part of the alphabet? February 5, 2019 BBSI Summer School - Iowa State University

Näive Suffix Tree Construction 2 3 4 1 MALAYALAM$ 2 ALAYALAM$ 3 LAYALAM$ 4 AYALAM$ 5 YALAM$ 6 ALAM$ 7 LAM$ 8 AM$ 9 M$ 10 $ A $MALAYALAM LAYALAM$ LAYALAM$ YALAM$ 2 1 3 4 February 5, 2019 BBSI Summer School - Iowa State University

Finding a (short) Pattern in a (long) String Build a suffix tree of the string. Starting from the root, traverse a path matching characters of the pattern. If stuck, pattern not present in string. Otherwise, each leaf below gives a position of the pattern in the string. February 5, 2019 BBSI Summer School - Iowa State University

Finding a Pattern in a String Find “ALA” A $ M LA YALAM$ AL 5 10 YALAM$ M$ M$ YALAM$ $ ALAYALAM$ 3 M$ 8 4 7 YALAM$ 1 9 Two matches - at 6 and 2 6 2 February 5, 2019 BBSI Summer School - Iowa State University

Finding Common Substrings Construct a generalized suffix tree for two strings (each suffix of each string is represented). Label each leaf with the suffix number and string label. Each internal node with a leaf from both strings in its subtree gives a common substring. February 5, 2019 BBSI Summer School - Iowa State University

Generalized Suffix Tree WINDOW$ INDIGO$ 1234567 1234567 $ D $OG I ND O W (2, 5) (1, 7) (2, 7) ND OW$ $OGI $OG $OGI OW$ $ $W $ INDOW$ (2, 4) (2, 2) (1, 3) (1, 5) (2, 6) (2, 3) (1, 4) $OGI OW$ (1, 6) (1, 1) (2, 1) (1, 2) February 5, 2019 BBSI Summer School - Iowa State University

Lowest Common Ancestors The lowest common ancestor (lca) of two nodes x and y in a rooted tree is the deepest node (farthest away from root) that is an ancestor of both x and y Concatenation of edge labels from root to the lca of two leaves spells out the longest common prefix (lcp) of two strings lca(x,y) an be found in constant time after linear preprocessing [Bender00] February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University A Useful Property String depth (lca (i , j)) = lcp (suffixi, suffixj) A A $ String depth = 3 M LA YALAM$ AL AL lca 5 10 YALAM$ M$ M$ YALAM$ $ ALAYALAM$ 8 4 7 3 M$ YALAM$ 1 9 6 2 February 5, 2019 BBSI Summer School - Iowa State University

Longest Common Extension RAI RAILWAY$ 12345678 GRAINY$ 1234567 RAI lce(1,1) = 0 lce(2,1) = 3 We’ll soon find lce’s useful in reconstructing phylogenetic trees based on whole genome/proteome sequences February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University lce’s and lca’s To compute lce’s for two strings S1 and S2 Build generalized suffix tree, T, of S1 and S2 Compute string depth for each node in T Preprocess T for lca queries lce(i,j) = string depth of lca of suffix i ofS1 and suffix j ofS2 February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University Example WINDOW$ INDIGO$ 1234567 1234567 $ D $OG I ND O W (2, 5) (1, 7) (2, 7) ND OW$ $OGI $OG $OGI OW$ $ $W $ INDOW$ (2, 4) (2, 2) (1, 3) (1, 5) (2, 6) (2, 3) (1, 4) $OGI OW$ (1, 6) (1, 1) (2, 1) (1, 2) February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University lce’s, revisited Given two strings S1 and S2 , we are now interested in finding, for each i, the index j such that lce (i, j) is maximal. What is the meaning of this task? How do we accomplish it efficiently? Notice that computing the values lce (i, j) for all j is inefficient! February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University Palindromes A palindrome is a string that reads the same in both directions E.g., CATGTAC red rum, sir, is murder Palindrome problem: Find all maximal palindromes in a string S February 5, 2019 BBSI Summer School - Iowa State University

Finding Palindromes in S Construct the reverse S’ of S Build generalized suffix tree of S and S’ Preprocess T for lce queries Now what? Left as homework Requirement: Linear time (const. per query) S q + 1 February 5, 2019 BBSI Summer School - Iowa State University

Palindromes in DNA sequences We sometimes need to deal with complemented palindromes A  T C  G E.g., ATCATGAT is a complemented palindrome All complemented palindromes in S can be found using a GST of S and the complement of S’ February 5, 2019 BBSI Summer School - Iowa State University

Suffix Array – Reducing Space 6 ALAM$ 2 ALAYALAM$ 8 AM$ 4 AYALAM$ 7 LAM$ 3 LAYALAM$ 1 MALAYALAM$ 9 M$ 5 YALAM$ 10 $ M A L A Y A L A M $ 1 2 3 4 5 6 7 8 9 10 6 2 8 4 7 3 1 9 5 10 Suffix Array 3 1 2 - Longest common prefix Array Suffix 6 and 2 share “ALA” Suffix 2 and 8 share just “A”. lcp is always with adjacent. February 5, 2019 BBSI Summer School - Iowa State University

Pattern Search in Suffix Array All suffixes that share a common prefix appear in consecutive positions in the array. Pattern P can be located in the string using a binary search on the suffix array. Naïve Run-time = O(|P|  log n). Improved to O(|P| + log n) [Manber&Myers93], and to O(|P|) [Abouelhoda et al. 02]. February 5, 2019 BBSI Summer School - Iowa State University

Computing longest common prefix Values Find where S1 is in the suffix array. Compute lcp value of S1. Find S2 in the suffix array. Compute lcp value of S2. Repeat for all suffixes. Run-time is linear (why?) February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University Example Text M A L Y $ Position 1 2 3 4 5 6 7 8 9 10 Suffix Array 3 7 4 10 5 8 9 1 2 6 lcp Array 3 1 1 2 1 6 ALAM$ 2 ALAYALAM$ 8 AM$ 4 AYALAM$ 7 LAM$ 3 LAYALAM$ 1 MALAYALAM$ 9 M$ 5 YALAM$ 10 $ February 5, 2019 BBSI Summer School - Iowa State University

Suffix Trees vs. Suffix Arrays Suffix Array = Lexicographic order of the leaves of the Suffix Tree Suffix Tree = Suffix Array + lcp Array (why? Wait for next slide) February 5, 2019 BBSI Summer School - Iowa State University

Building a ST from a SA and lcp 6 ALAM$ 2 ALAYALAM$ 8 AM$ 4 AYALAM$ 7 LAM$ 3 LAYALAM$ 1 MALAYALAM$ 9 M$ 5 YALAM$ 10 $ A LA D = 1 D = 2 AL YALAM$ $M $M YALAM$ D = 3 $M 8 4 7 3 YALAM$ 6 2 SA 6 2 8 4 7 3 1 9 5 10 lcp 3 1 2 - February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University Some Results Suffix tree can be constructed in O(n) time and O(n  |∑|) space [Weiner73, McCreight76, Ukkonen92]. Suffix arrays can be constructed without using suffix trees in O(n) time [Pang&Aluru03]. February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University More Applications Suffix-prefix overlaps in fragment assembly Maximal and tandem repeats Shortest unique substrings Maximal unique matches [MUMmer] Approximate matching February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University Dealing with errors The basic string data structures can only extract information in the absence of errors. To deal with errors, decompose into parts that do not involve errors. February 5, 2019 BBSI Summer School - Iowa State University

The k-mismatch problem Given a pattern P, a text T, and a number k, find all occurrences of P in T with at most k mismatches Example P = bend, T = abentbananaend, k = 2 Match 1: bent Match 2: bana Match 3: aend February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University Solution Build GST of P and T and preprocess it for lce queries For each starting index i in T, do at most k lce queries to determine if there is a k-mismatch beginning at i T P Time = O(k |T |) February 5, 2019 BBSI Summer School - Iowa State University

BBSI Summer School - Iowa State University References M. I. Abouelhoda, S. Kurtz and E. Ohlebusch, The enhanced suffix array and its applications to genome analysis, 2nd Workshop on Algorithms in Bioinformatics, pp. 449-463, 2002. M. A. Bender and M. Farach-Colton, The LCA Problem Revisited, LATIN, pages 88-94, 2000. P. Ko and S. Aluru, Linear time suffix sorting, CPM, pages 200-210, 2003. U. Manber and G. Myers. Suffix arrays: a new method for on-line search, SIAM J. Comput., 22:935-948, 1993. E. M. McCreight, A space-economical suffix tree construction algorithm, J. ACM, 23(2):262--272, 1976. E. Ukkonen, Constructing suffix trees on-line in linear time. Intern. Federation of Information Processing, pp. 484-492,1992. Also in Algorithmica, 14(3):249--260, 1995. P. Weiner, Linear pattern matching algorithms, Proc. of the 14th IEEE Annual Symp. on Switching and Automata Theory, pp. 1-11, 1973. February 5, 2019 BBSI Summer School - Iowa State University