Making sense of staggered light-quark baryons: Insights from the quark model Jon A. Bailey August 23, 2007.

Slides:



Advertisements
Similar presentations
Excited State Spectroscopy from Lattice QCD
Advertisements

Diquarks in heavy baryons Atsushi Hosaka (RCNP, Osaka U. ) 9/10-13, 2013Charmed baryons1 Practical questions of hadron physics How ground and excited states.
Sasa PrelovsekScadron70, February Simulations of light scalar mesons on the lattice and related difficulties Scadron 70, IST Lisbon, Portugal (February.
Sasa PrelovsekScadron70, February Simulations of light scalar mesons on the lattice and related difficulties Scadron 70, IST Lisbon, Portugal (February.
Dynamical Anisotropic-Clover Lattice Production for Hadronic Physics C. Morningstar, CMU K. Orginos, College W&M J. Dudek, R. Edwards, B. Joo, D. Richards,
Introduction & motivation Baryons in the 1/N c expansion of QCD Photoproduction of excited baryons Summary & conclusions N.N. Scoccola Department of Physics.
PHYS 745G Presentation Symmetries & Quarks
Hadrons and Nuclei : Introductory Remarks Lattice Summer School Martin Savage Summer 2007 University of Washington.
Effective field theories for QCD with rooted staggered fermions Claude Bernard, Maarten Golterman and Yigal Shamir Lattice 2007, Regensburg.
P461 - particles I1 all fundamental with no underlying structure Leptons+quarks spin ½ while photon, W, Z, gluons spin 1 No QM theory for gravity Higher.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Structure of strange baryons Alfons Buchmann University of Tuebingen 1.Introduction 2.SU(6) spin-flavor symmetry 3.Observables 4.Results 5.Summary Hyperon.
Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models Wei-jie Fu, ITP, CAS Collaborated with Prof. Yu-xin.
Lepton Photon Symposium LP01 Searches for New Particles Gail G. Hanson Indiana University.
Lecture 10: Inelastic Scattering from the Proton 7/10/2003
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
Finite Density with Canonical Ensemble and the Sign Problem Finite Density Algorithm with Canonical Ensemble Approach Finite Density Algorithm with Canonical.
1.7 THE EIGHTFOLD WAY ( ). The Mendeleev of elementary particle physics was Murray Gell-Mann, who introduced the so- called Eightfold Way.
Meson spectroscopy with photo- and electro-production Curtis A. Meyer Carnegie Mellon University.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
Mesons and Glueballs September 23, 2009 By Hanna Renkema.
Hadron spectrum : Excited States, Multiquarks and Exotics Hadron spectrum : Excited States, Multiquarks and Exotics Nilmani Mathur Department of Theoretical.
John W. Price N* October 2005 Cascade Physics A New Window on Baryon Spectroscopy John W. Price California State University, Dominguez Hills.
Hadron Spectroscopy from Lattice QCD
PATTERNS IN THE NONSTRANGE BARYON SPECTRUM P. González, J. Vijande, A. Valcarce, H. Garcilazo.
Light mesons and structure of QCD vacuum
Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
Partial Dynamical Symmetry in Odd-Mass Nuclei A. Leviatan Racah Institute of Physics The Hebrew University, Jerusalem, Israel P. Van Isacker, J. Jolie,
Solving Vibrational Problems… So easy!! …right? How to model the potential? 9x9 matrix. Don’t screw up your partials!
Baryons (and Mesons) on the Lattice Robert Edwards Jefferson Lab EBAC May 2010 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Quark Nuclear Physics or A theory of baryon resonances at large N c Dmitri Diakonov, Victor Petrov and Alexey Vladimirov Petersburg Nuclear Physics Institute,
Standard Model - Standard Model prediction (postulated that neutrinos are massless, consistent with observation that individual lepton flavors seemed to.
Precision Charmed Meson Spectroscopy and Decay Constants from Chiral Fermions Overlap Fermion on 2+1 flavor Domain Wall Fermion Configurations Overlap.
Recent Research on the Thomas Fermi Quark Model Work with Andy Liu and Nate Larson!
 Review of QCD  Introduction to HQET  Applications  Conclusion Paper: M.Neubert PRPL 245,256(1994) Yoon yeowoong(윤여웅) Yonsei Univ
U(1) Define a property characterized by a single value. Define a property characterized by a single value. E.G. Objects color E.G. Objects color Change.
1 Keitaro Nagata and Atsushi Hosaka Research Center for Nuclear Physics, Osaka Univ. Quark-Diquark approach for the nucleon and Roper resonance Workshop.
Convergence of chiral effective theory for nucleon magnetic moments P. Wang, D. B. Leinweber, A. W. Thomas, A. G. Williams and R. Young.
Study of sigma meson structure in D meson decay Masayasu Harada (Nagoya Univ.) at International Workshop on New Hadon Spectroscopy (November 21, 2012,
Hunting for Hierarchies in PSL 2 (7) MICHAEL JAY PEREZ PHENOMENOLOGY 2015 MAY 5, 2015 ARXIV : /
DPyC 2007Roelof Bijker, ICN-UNAM1 An Unquenched Quark Model of Baryons Introduction Degrees of freedom Unquenched quark model Closure limit; Spin of the.
Baryon Resonances from Lattice QCD Robert Edwards Jefferson Lab GHP 2011 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
The quark model FK7003.
Lattice QCD at finite temperature Péter Petreczky
Baryons on the Lattice Robert Edwards Jefferson Lab Hadron 09
Baryon Isospin Mass Splittings
B States at the Tevatron
P. Gubler, T.T. Takahashi and M. Oka, Phys. Rev. D 94, (2016).
Structure of Mass Gap Between Two Spin Multiplets
A novel probe of Chiral restoration in nuclear medium
mesons as probes to explore the chiral symmetry in nuclear matter
Nucleon Resonances from Lattice QCD
Scalar Meson σ(600) in the QCD Sum Rule
Handout 7 : Symmetries and the Quark Model
Baryon Spectroscopy and Resonances
A lattice study of light scalar tetraquarks with I=0, 1/2, 1
Exotic charmed four-quark mesons: molecules versus compact states
Excited State Spectroscopy from Lattice QCD
Excited State Spectroscopy from Lattice QCD
Ye Li Graduate Student UW – Madison
Charm2010 4TH International Workshop on Charm Physics
d*, a quark model perspective
Staggered Diquarks for Singly Heavy Baryons
Excited State Spectroscopy from Lattice QCD
Cascade Physics with CLAS
s, pentaquarks or excited heavy baryons, or both?
Chiral Structure of Hadronic Currents
Excited state meson and baryon spectroscopy from Lattice QCD
Heavy quark exotica and heavy quark symmetry
Presentation transcript:

Making sense of staggered light-quark baryons: Insights from the quark model Jon A. Bailey August 23, 2007

Challenge of staggered baryon spectroscopy Extract the masses of the lightest octet and decuplet baryons using rooted staggered QCD Success would provide valuable evidence for rooted staggered QCD rooted SχPT Taste quantum numbers complicate analysis Deducing the lightest staggered baryon multiplets involved but straightforward

Taste quantum numbers M = @ ^ m I 1 A S U ( 3 ) ! 1 2 Four tastes for each physical quark flavor M = @ ^ m I 4 s 1 A Larger flavor symmetry group S U ( 3 ) F ! 1 2 f

Consider the quark model ² L i g h t e s o c a n d u p l m b y r f S U ( 6 ) S U ( 6 ) ¾ 2 £ 3 F 5 ! 1 ; 8 M © ² S u c e s o f n - r l a t i v q k m d y g ² I f r o t e d s a g Q C D i c , h n q u k m l d e s c r i b l g h t a y o n m u p

Staggered quark model W h e r a t p y s i c l o n d u ? ² L i g h t e b a r y o n m u l p d c f S U ( 2 4 ) S U ( 2 4 ) ¾ £ 1 f 6 ! ; 5 7 M © 3 W h e r a t p y s i c l o n d u ? ² N e d t o k n w f r p a s l c i h x

Identifying physical baryons: Single-taste baryons ² I f r o t e d s a g Q C D i c , h n S U ( 4 ) T i n t h e c o u m l ² T a s t e r j u l i k x ° v o ; q n ² C o n s i d e r b a y c t g l f q u k ; t o h a v e c r S U ( 2 ) £ 1 f s y m , S U ( 3 ) F s y m e t r u b a 1 2 f S U ( 2 4 ) ¾ £ 1 f 6 ! ; 5 7 M © 3

Flavor-taste basis ² D i s e n t a g l ° v o r S U ( 3 ) d 4 q u m b : 1 2 ) f ¾ 3 F £ 4 T 5 7 M ! ; © 8 ¹ A 6 ² I n t h e c o i u m l , a b r s f g v p a r e d g n t ² A l 2 S b a r y o n s c e p d t h i

Continuum symmetry ) S U ( 8 £ 4 ¾ M = @ ^ m I 1 A µ ¶ ^ T m Continuum symmetry is larger than taste alone M = @ ^ m I 4 s 1 A µ 8 ¶ ) S U ( 8 ^ m £ 4 s ¾ T Baryons transforming within a given irrep of continuum symmetry are degenerate

Continuum irreps S U ( 1 2 ) ¾ 8 £ 4 3 6 4 ! ( 1 2 ; ) © 8 5 7 : f ¾ 8 ^ m £ 4 s 3 6 4 S ! ( 1 2 ; ) © 8 5 7 M A : Deduce correspondence between continuum irreps and physical states by locating single-taste baryons in each continuum irrep

Correspondence with physical baryons U ( 1 2 ) f ¾ 8 ^ m £ 4 s ¢ § ¤ ¥ ­ ¡ 3 6 4 S ! ( 1 2 ; ) © 8 5 7 M A : N ¤ § ¤ s ¥ N ( 1 4 ) ( 1 6 ) All irreps but two correspond to physical states Exceptions are partially quenched baryons

Wait a minute! ) K e y : I s t a S U ( 4 r o d i n h c u m l ? ² D o e p r n c f t a w i h u y l m v d r o t e d s a g Q C D ? ) N o . C n s e r v a t i f S U ( 8 ^ m £ 4 q u b f o r b i d s m x n g t h e a w p y c l . T s i t u a o n w h e c r p l y q d . ) K e y : I s t a S U ( 4 T r o d i n h c u m l ?

Summary If rooted staggered QCD is correct, then lightest multiplets of staggered baryons are straightforwardly, accurately described by quark model Testing resulting picture means testing rooted staggered QCD Analysis can immediately be extended to excited states, heavy-light-light baryons, . . . hep-lat/0611023

N o . f l a t i c e r p s n u m S U ( 1 2 ) ¾ 8 £ 4 ¢ § ¥ ­ 1 3 2 7 N x = y ^ a n d z s S U ( 1 2 ) f ¾ 8 x ; y £ 4 z 3 6 4 S ! ( 1 2 ; ) © 8 5 7 M A : ¢ § ¤ ¥ ­ ¡ 1 3 2 7 N ¤ § 1 2 ¤ s ¥ N 5 7 4

Mixing § ¤ § ( ; 6 4 ) ! 1 8 © 7 : 5 ) F o r e a c h m b f t ( ; 1 6 i States with the same conserved quantum numbers—i.e., corresponding members of the same type of irrep—mix § ¤ ( 3 2 ; 6 S 4 ) ! 1 8 ¡ © 7 : 5 A ¤ § ) F o r e a c h m b f t ( ; 1 6 ¡ i s 9 - d x n g

Swapping degeneracies with physical states m x = y ^ ; z s ^ m à ! s m x = y s ; z ^ S U ( 8 ) x ; y £ 1 z 4 S U ( 2 ) I £ 1 z G T N à ! s ¤ § ¥ ¢ ­ ¡