Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics

Slides:



Advertisements
Similar presentations
6.1 Transistor Operation 6.2 The Junction FET
Advertisements

Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.
Spring 2007EE130 Lecture 30, Slide 1 Lecture #30 OUTLINE The MOS Capacitor Electrostatics Reading: Chapter 16.3.
EE105 Fall 2007Lecture 16, Slide 1Prof. Liu, UC Berkeley Lecture 16 OUTLINE MOS capacitor (cont’d) – Effect of channel-to-body bias – Small-signal capacitance.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 30 Metal-Semiconductor Contacts Real semiconductor devices and ICs always contain.
NMOS PMOS. K-Map of NAND gate CMOS Realization of NAND gate.
ECE 4339 L. Trombetta ECE 4339: Physical Principles of Solid State Devices Len Trombetta Summer 2007 Chapters 16-17: MOS Introduction and MOSFET Basics.
Norhayati Soin 06 KEEE 4426 WEEK 3/1 9/01/2006 KEEE 4426 VLSI WEEK 3 CHAPTER 1 MOS Capacitors (PART 1) CHAPTER 1.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – Poly-Si gate depletion effect – V T adjustment Reading: Pierret ; Hu.
Lecture 7 OUTLINE Poisson’s equation Work function Metal-Semiconductor Contacts – Equilibrium energy band diagrams – Depletion-layer width Reading: Pierret.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
Integrated Circuit Devices
EE130/230A Discussion 10 Peng Zheng.
MOS Transistor Theory The MOS transistor is a majority carrier device having the current in the conducting channel being controlled by the voltage applied.
L ECE 4243/6243 Fall 2016 UConn F. Jain Notes Chapter L11 (page ). FET Operation slides Scaling Laws of FETs (slides 9-22)
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 2 OUTLINE Important quantities
Revision CHAPTER 6.
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Intro to Semiconductors and p-n junction devices
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
EMT362: Microelectronic Fabrication CMOS ISOLATION TECHNOLOGY Part 1
ECE574 – Lecture 3 Page 1 MA/JT 1/14/03 MOS structure MOS: Metal-oxide-semiconductor –Gate: metal (or polysilicon) –Oxide: silicon dioxide, grown on substrate.
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Lecture 7 OUTLINE Poisson’s equation Work function
MOS Capacitor Low Frequency Characteristics
Lecture 22 OUTLINE The MOSFET (cont’d) Velocity saturation
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 16 ANNOUNCEMENTS OUTLINE MOS capacitor (cont’d)
Lecture 19 OUTLINE The MOSFET: Structure and operation
Professor Ronald L. Carter
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
MOS Capacitor Basics Metal SiO2
Lecture 7 OUTLINE Poisson’s equation Work function
EE130/230A Discussion 5 Peng Zheng.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
Professor Ronald L. Carter
EE130/230A Discussion 8 Peng Zheng.
Sung June Kim Chapter 16. MOS FUNDAMENTALS Sung June Kim
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
Lecture 7 OUTLINE Work Function Metal-Semiconductor Contacts
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
6.1 Transistor Operation 6.2 The Junction FET
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture 22 OUTLINE The MOSFET (cont’d) Velocity saturation
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 20 OUTLINE The MOSFET (cont’d)
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Lecture 20 OUTLINE The MOSFET (cont’d)
Professor Ronald L. Carter
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 9 OUTLINE pn Junction Diodes Electrostatics (step junction)
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Sung June Kim Chapter 18. NONIDEAL MOS Sung June Kim
Semiconductor Device Modeling & Characterization Lecture 20
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
MOSCAP Non-idealities
Professor Ronald L. Carter
Presentation transcript:

Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics Reading: Pierret 16.3; Hu 5.2-5.5

Bulk Semiconductor Potential, fF p-type Si: n-type Si: Ec Ei qfF EF Ev Ec EF |qfF| Ei Ev EE130/230M Spring 2013 Lecture 16, Slide 2

Voltage Drops in the MOS System In general, where qVFB = FMS = FM – FS Vox is the voltage dropped across the oxide (Vox = total amount of band bending in the oxide) fs is the voltage dropped in the silicon (total amount of band bending in the silicon) For example: When VG = VFB, Vox = fs = 0, i.e. there is no band bending EE130/230M Spring 2013 Lecture 16, Slide 3

MOS Band Diagrams for n-type Si Decrease VG toward more negative values  the gate electron energy increases relative to that in the Si decrease VG decrease VG Accumulation VG > VFB Electrons accumulate at surface Depletion VG < VFB Electrons repelled from surface Inversion VG < VT Surface becomes p-type EE130/230M Spring 2013 Lecture 16, Slide 4

MOS Band Diagrams for p-type Si increase VG increase VG VG = VFB VG < VFB VT > VG > VFB EE130/230M Spring 2013 Lecture 16, Slide 5

Accumulation (n+ poly-Si gate, p-type Si) VG < VFB 3.1 eV | qVox | Ec= EFM GATE Ev |qVG | - - - - - - xo |qfS| is small,  0 + + + + + + + VG Ec _ p-type Si 4.8 eV EFS Ev Mobile carriers (holes) accumulate at Si surface EE130/230M Spring 2013 Lecture 16, Slide 6

Accumulation Layer Charge Density VG < VFB From Gauss’ Law: GATE - - - - - - xo + + + + + + + VG _ Qacc (C/cm2) p-type Si (units: F/cm2) EE130/230M Spring 2013 Lecture 16, Slide 7

Depletion (n+ poly-Si gate, p-type Si) M O S VT > VG > VFB qVox W Ec GATE EFS + + + + + + 3.1 eV qfS Ev qVG - - - - - - + VG _ Ec= EFM p-type Si Ev 4.8 eV Si surface is depleted of mobile carriers (holes) => Surface charge is due to ionized dopants (acceptors) EE130/230M Spring 2013 Lecture 16, Slide 8

Depletion Width W (p-type Si) Depletion Approximation: The surface of the Si is depleted of mobile carriers to a depth W. The charge density within the depletion region is Poisson’s equation: Integrate twice, to obtain fS: To find fs for a given VG, we need to consider the voltage drops in the MOS system… EE130/230M Spring 2013 Lecture 16, Slide 9

Voltage Drops in Depletion (p-type Si) From Gauss’ Law: GATE + + + + + + - - - - - - + VG _ Qdep (C/cm2) Qdep is the integrated charge density in the Si: p-type Si EE130/230M Spring 2013 Lecture 16, Slide 10

Surface Potential in Depletion (p-type Si) Solving for fS, we have EE130/230M Spring 2013 Lecture 16, Slide 11

Threshold Condition (VG = VT) When VG is increased to the point where fs reaches 2fF, the surface is said to be strongly inverted. This is the threshold condition. VG = VT (The surface is n-type to the same degree as the bulk is p-type.) EE130/230M Spring 2013 Lecture 16, Slide 12

MOS Band Diagram at Threshold (p-type Si) qVox WT qfF Ec EFS qfF qfs Ev qVG Ec= EFM Ev EE130/230M Spring 2013 Lecture 16, Slide 13

Threshold Voltage For p-type Si: For n-type Si: EE130/230M Spring 2013 Lecture 16, Slide 14

Strong Inversion (p-type Si) As VG is increased above VT, the negative charge in the Si is increased by adding mobile electrons (rather than by depleting the Si more deeply), so the depletion width remains ~constant at W = WT WT r(x) M O S GATE + + + + + + x - - - - - - + VG _ p-type Si Significant density of mobile electrons at surface (surface is n-type) EE130/230M Spring 2013 Lecture 16, Slide 15

Inversion Layer Charge Density (p-type Si) EE130/230M Spring 2013 Lecture 16, Slide 16