Warm Up There are 5 blue, 4 red, 1 yellow and 2 green beads in a bag. Find the probability that a bead chosen at random from the bag is: 1. blue 2.

Slides:



Advertisements
Similar presentations
Independent and 11-3 Dependent Events Warm Up Lesson Presentation
Advertisements

Ch 11 – Probability & Statistics
Holt Algebra Independent and Dependent Events 11-3 Independent and Dependent Events Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Independent and Dependent events. Warm Up There are 5 blue, 4 red, 1 yellow and 2 green beads in a bag. Find the probability that a bead chosen at random.
Algebra1 Independent and Dependent Events
 Probability- the likelihood that an event will have a particular result; the ratio of the number of desired outcomes to the total possible outcomes.
Learning Target: I can… Find the probability of simple events.
Academy Algebra II/Trig 14.3: Probability HW: worksheet Test: Thursday, 11/14.
Warm up Two cards are drawn from a deck of 52. Determine whether the events are independent or dependent. Find the indicated probability. A. selecting.
D4/2 Use the following Venn diagram to answer the question: If the 2 ovals in the Venn diagram above represent events A and B, respectively, what is ?
Independent and 10-7 Dependent Events Warm Up Lesson Presentation
Review of Probability.
Compound Probability Pre-AP Geometry. Compound Events are made up of two or more simple events. I. Compound Events may be: A) Independent events - when.
Copyright © Ed2Net Learning Inc.1. 2 Warm Up Use the Counting principle to find the total number of outcomes in each situation 1. Choosing a car from.
Independent and Dependent Events
1 Independent and Dependent Events. 2 Independent Events For independent events, the outcome of one event does not affect the other event. The probability.
Three coins are tossed. What is the probability of getting all heads or all tails? A wheel of chance has the numbers 1 to 42 once, each evenly spaced.
Topic 4A: Independent and Dependent Events Using the Product Rule
Warm Up Find the theoretical probability of each outcome 1. rolling a 6 on a number cube. 2. rolling an odd number on a number cube. 3. flipping two coins.
Warm Up Find the theoretical probability of each outcome
Bell Work 1.Mr. Chou is redecorating his office. He has a choice of 4 colors of paint, 3 kinds of curtains, and 2 colors of carpet. How many different.
7th Probability You can do this! .
Algebra II 10.3: Define and Use Probability Quiz : tomorrow.
Lesson 3-6. Independent Event – 1st outcome results of probability DOES NOT affect 2nd outcome results Dependent Event – 1st outcome results of probability.
Algebra II 10.4: Find Probabilities of Disjoint and Overlapping Events HW: HW: p.710 (8 – 38 even) Chapter 10 Test: Thursday.
Note to the Presenter Print the notes of the power point (File – Print – select print notes) to have as you present the slide show. There are detailed.
Warm Up There are 5 blue, 4 red, 1 yellow and 2 green beads in a bag. Find the probability that a bead chosen at random from the bag is: 1. blue 2.
DEFINITION  INDEPENDENT EVENTS:  Two events, A and B, are independent if the fact that A occurs does not affect the probability of B occurring.
Warm Up Multiply. Write each fraction in simplest form. 1. 2.  Write each fraction as a decimal
PROBABILITY INDEPENDENT & DEPENDENT EVENTS. DEFINITIONS: Events are independent events if the occurrence of one event does not affect the probability.
Compound Events COURSE 2 LESSON 12-5
Warm Up Find the theoretical probability of each outcome
Do Now. Introduction to Probability Objective: find the probability of an event Homework: Probability Worksheet.
Chapter 10 – Data Analysis and Probability 10.8 – Probability of Independent and Dependent Events.
Examples 1.At City High School, 30% of students have part- time jobs and 25% of students are on the honor roll. What is the probability that a student.
Unit 4 Probability Day 3: Independent and Dependent events.
2 pt 3 pt 4 pt 5pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2pt 3 pt 4pt 5 pt 1pt 2pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4pt 5 pt 1pt Chapter 9.
Warm-Up #9 (Tuesday, 2/23/2016) 1.(Use the table on the left) How many students are in the class? What fraction of the students chose a red card? ResultFrequency.
Chapter 22 E. Outcomes of Different Events When the outcome of one event affects the outcome of a second event, we say that the events are dependent.
Warm Up Find the theoretical probability of each outcome
Please copy your homework into your assignment book
Algebra II Elements 10.6: Introduction to Probability
Aim: What is the multiplication rule?
10.7: Probability of Compound Events Test : Thursday, 1/16
Warm-up EOC Question of the Day.
Do Now You roll a die and spinning a spinner numbered What is the probability of rolling an even number and landing on a power of 3 on the spinner?
11-4 Compound Events Warm Up Lesson Presentation Lesson Quiz
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Lesson 13.4 Find Probabilities of Compound Events
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
The probability of event P happening is 0. 34
Secondary Math Venn Diagrams – and/or.
Main Idea and New Vocabulary
Independent and Dependent Events
Events are independent events if the occurrence of one event does not affect the probability of the other. If a coin is tossed twice, its landing heads.
Warm Up There are 5 blue, 4 red, 1 yellow and 2 green beads in a bag. Find the probability that a bead chosen at random from the bag is: 1. blue 2.
Independent and 7-3 Dependent Events Warm Up Lesson Presentation
Compound Probability.
Combination and Permutations Quiz!
Secondary Math Venn Diagrams – and/or.
Please copy your homework into your assignment book
Probability and Counting
Probability of Dependent and Independent Events
Independent and 10-7 Dependent Events Warm Up Lesson Presentation
“Compound Probability”
Independent and Dependent Events Warm Up Lesson Presentation
Events are independent events if the occurrence of one event does not affect the probability of the other. If a coin is tossed twice, its landing heads.
Bellwork: 5/13/16 Find the theoretical probability of each outcome
Probability of Independent Event
Thursday 05/16 Warm Up 200 people were surveyed about ice cream preferences. 78 people said they prefer chocolate. 65 people said they prefer strawberry.
Presentation transcript:

Warm Up There are 5 blue, 4 red, 1 yellow and 2 green beads in a bag. Find the probability that a bead chosen at random from the bag is: 1. blue 2. green 3. blue or green 4. blue or yellow 5. not red 6. not yellow

Objectives Determine whether events are independent or dependent. Find the probability of independent and dependent events.

Example 1B: Finding the Probability of Independent Events A six-sided cube is labeled with the numbers 1, 2, 2, 3, 3, and 3. Four sides are colored red, one side is white, and one side is yellow. Find the probability. Tossing red, then white, then yellow. The result of any toss does not affect the probability of any other outcome. P(red, then white, and then yellow) = P(red)  P(white)  P(yellow) 4 of the 6 sides are red; 1 is white; 1 is yellow.

Events are dependent events if the occurrence of one event affects the probability of the other. For example, suppose that there are 2 lemons and 1 lime in a bag. If you pull out two pieces of fruit, the probabilities change depending on the outcome of the first.

The tree diagram shows the probabilities for choosing two pieces of fruit from a bag containing 2 lemons and 1 lime.

The probability of a specific event can be found by multiplying the probabilities on the branches that make up the event. For example, the probability of drawing two lemons is .

To find the probability of dependent events, you can use conditional probability P(B|A), the probability of event B, given that event A has occurred.

Conditional probability often applies when data fall into categories.

Domestic Migration by Region Example 3: Using a Table to Find Conditional Probability The table shows domestic migration from 1995 to 2000. A person is randomly selected. Find each probability. Domestic Migration by Region (thousands) Region Immigrants Emigrants Northeast 1537 2808 Midwest 2410 2951 South 5042 3243 West 2666 2654

Example 3 Continued A. that an emigrant is from the West Use the emigrant column. Of 11,656 emigrants, 2654 are from the West. B. that someone selected from the South region is an immigrant Use the South row. Of 8285 people, 5042 were immigrants.

In many cases involving random selection, events are independent when there is replacement and dependent when there is not replacement. A standard card deck contains 4 suits of 13 cards each. The face cards are the jacks, queens, and kings. Remember!

Example 4: Determining Whether Events Are Independent or Dependant Two cards are drawn from a deck of 52. Determine whether the events are independent or dependent. Find the probability.

Example 4 Continued A. selecting two hearts when the first card is replaced Replacing the first card means that the occurrence of the first selection will not affect the probability of the second selection, so the events are independent. P(heart|heart on first draw) = P(heart)  P(heart) 13 of the 52 cards are hearts.

Example 4 Continued B. selecting two hearts when the first card is not replaced Not replacing the first card means that there will be fewer cards to choose from, affecting the probability of the second selection, so the events are dependent. P(heart)  P(heart|first card was a heart) There are 13 hearts. 12 hearts and 51 cards are available for the second selection.

Example 4 Continued C. a queen is drawn, is not replaced, and then a king is drawn Not replacing the first card means that there will be fewer cards to choose from, affecting the probability of the second selection, so the events are dependent. P(queen)  P(king|first card was a queen) There are 4 queens. 4 kings and 51 cards are available for the second selection.

Lesson Quiz: Part II 3. Two cards are drawn from a deck of 52. Determine whether the events are independent or dependent. Find the indicated probability. A. selecting two face cards when the first card is replaced B. selecting two face cards when the first card is not replaced independent; dependent;