AOF Wave front sensor modules GALACSI and GRAAL by Stefan Ströbele in behalf of the GALACSI and GRAAL Team members: R.Arsenault, R.Conzelmann, B.Delabre,

Slides:



Advertisements
Similar presentations
NAOS-CONICA (a.k.a NACO) for the VLT
Advertisements

Standard stars for the ZIMPOL polarimeter
The GMT NGS WFS design Presented by S. Esposito. The team L. Fini G. Agapito L. Carbonaro A. Puglisi L. Busoni V. Biliotti A. Riccardi S. Esposito E.
Geminis Future AO Program A Decade of AO Evolution at Gemini Recent AO Program Highlights Doug Simons Gemini Observatory.
W Unit Opto-Mechanical Acceptance Test Specifications A.Tozzi, E.Pinna, S.Esposito FLAO system external review, Florence, 30/31 March 2009 FLAO_03 (CAN:
FAR-IR OPTICS DESIGN AND VERIFICATION EXPERIMENTAL SYSTEM AND RESULTS Final Meeting “Far-IR Optics Design and Verification”, Phase 2 27 November 2002,
ESO, 27 Nov 09 SPHERE – the high contrast challenge Markus Kasper, ESO 1 1.
TMT.AOS.PRE REL01 1 Brent Ellerbroek TMT SPIE 2010 San Diego, June 26, TMT Early Light Adaptive Optics.
20 years of AO at ESO MACAO-CRIRES, or how to recycle a good idea.
Subaru AO in future. Outline Overview of AO systems at Mauna Kea and in the world. Ongoing plan of AOS at Subaru and Mauna Kea. What’s in future.
Osservatorio di Arcetri Adaptive primary mirrors for ELTs A. Riccardi 1, P. Salinari 1, G. Brusa 1, R. Ragazzoni 1, S. Esposito 1, D. Gallieni 2 and R.
European Southern Observatory European Southern Observatory © ESO 2005 Page 1 AO Department Leiden, April 26th 2005 MUSE M ulti U nit S pectroscopic E.
GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
A First-Light AO system for LBT AGW Unit: a conceptual design S. Esposito, M. Accardo, C. Baffa, V. Biliotti, G. Brusa, M. Carbillet, D. Ferruzzi, L. Fini,
Thomas Stalcup June 15, 2006 Laser Guidestar System Status.
Page 1 Lecture 12 Part 1: Laser Guide Stars, continued Part 2: Control Systems Intro Claire Max Astro 289, UC Santa Cruz February 14, 2013.
LBT AO Progress Meeting, Arcetri Walter Seifert (ZAH, LSW) The LBT AO System and LUCIFER 1.Requirements for the commissioning of LUCIFER:
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
Laser guide star adaptive optics at the Keck Observatory Adam R. Contos, Peter L. Wizinowich, Scott K. Hartman, David Le Mignant, Christopher R. Neyman,
LBT AGW units Design Review Mar.2001 General Concept Performance specifications and goals The off-axis unit The mechanical support structure The control.
GMT Phasing GLAO – not needed LTAO – Phase stabilization done at ~1kHz with edge sensing at M1 and M2 – Phase reference set at ~.01Hz using off-axis star.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
NIR LOWFS for Keck and TMT Roger Smith & David Hale.
NGAO 1-tier Draft Optical Relay Design P. Wizinowich 12/7/07.
LGS WFS Design Status & Issues Dekany, Delacroix, & Velur Caltech Optical Observatories.
1 Laser Guide Star Wavefront Sensor Mini-Review 6/15/2015Richard Dekany 12/07/2009.
PALM-3000 PALM-3000 Instrument Architecture Antonin Bouchez PALM-3000 Requirements Review November 12, 2007.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
MMT Real-Time-Reconstructor. Hardware CPU: Quad-core Xeon 2.66 GHz RAM: 2GB OS: CentOS with RTAI real-time extensions Frame Grabber: EDT PCI-DV.
NGAO 1-tier Draft Optical Relay Design P. Wizinowich 12/3/07.
PSWG March Adaptive Optics Systems Engineering on GMT Peter McGregor.
What Requirements Drive NGAO Cost? Richard Dekany NGAO Team Meeting September 11-12, 2008.
The Gemini MCAO System (EPICS Meeting, SLAC, April 2005) 1 The Gemini MCAO System Andy Foster Observatory Sciences Ltd.
8 September Observational Astronomy TELESCOPES, Active and adaptive optics Kitchin pp
 Johann Kolb, Norbert Hubin  Mark Downing, Olaf Iwert, Dietrich Baade Simulation results:  Richard Clare Detectors for LGS WF sensing on the E-ELT 1AO.
Big Bear Solar Observatory NST Main Features  All reflecting, off-axis Gregory optical configuration  PM: 1.6 m clear aperture with f/2.4  Figuring.
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
MCAO Adaptive Optics Module Mechanical Design Eric James.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
Adaptive Optics in the VLT and ELT era Beyond Basic AO
Laboratory prototype for the demonstration of sodium laser guide star wavefront sensing on the E-ELT Sexten Primary School July 2015 THE OUTCOME.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
The two faces of the METIS Adaptive Optics system Remko Stuik, Stefan Hippler, Andrea Stolte, Bernhard Brandl, Lars Venema, Miska Le Louarn, Matt Kenworthy,
GLAO simulations at ESO European Southern Observatory
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
The AO system for the GTC -an update Nicholas Devaney, Dolores Bello, Bruno Femenía, Alejandro Villegas, Javier Castro Grantecan, Instituto de Astrofísica.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
OC, June 3, SAM – SOAR Adaptive Module Andrei Tokovinin Nicole van der Bliek.
FLAO system test plan in solar tower S. Esposito, G. Brusa, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
The VLT Adaptive Optics Facility
1 1 st Light AO 4 LBT Pyramid WFS Adaptive Secondary MMT Unit.
SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena.
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
ASTR 3010 Lecture 18 Textbook N/A
Conference “Feeding the Giants: ELTs in the era of Surveys” -- Ischia 31/08/2011 Large field of view and ELTs: an impossible marriage? Paolo Ciliegi (INAF.
Ground Layer AO at ESO’s VLT Claire Max Interim Director UC Observatories September 14, 2014.
Experimental results of tomographic reconstruction on ONERA laboratory WFAO bench A. Costille*, C. Petit*, J.-M. Conan*, T. Fusco*, C. Kulcsár**, H.-F.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
Page 1 Adaptive Optics in the VLT and ELT era Beyond Basic AO François Wildi Observatoire de Genève.
Design of the NFIRAOS PWFS module
Pyramid sensors for AO and co-phasing
Progress on 1.8m Telescope with 127-element Adaptive Optics at IOE
Presentation transcript:

AOF Wave front sensor modules GALACSI and GRAAL by Stefan Ströbele in behalf of the GALACSI and GRAAL Team members: R.Arsenault, R.Conzelmann, B.Delabre, R. Donaldson, M.Duchateau, G.Hess, P.Jolley, A. Jost, M.Kiekebusch, M.Lelouarn, P.Y.Madec, A.Manescau, J.Pirard, J.Quentin, R.Siebenmorgen, C.Soenke, S.Tordo, J.Vernet, SPARTA, DSM, 4LGS, ASSIST, Teams, Integration and IR and CCD detector groups 20 Years

GRAAL- GALACSI Comparison 20 Years parameterGRAALGALACSI InstrumentHawk-I (IR imager) ESOMuse (VIS 3D-spectrograph) Lyon ModeMaintenance modeGLAOWide Field ModeNarrow Field Mode Field of view AO modeSCAOGLAO LTAO Performance (S.R. ~ 80% in K- band) x1.7 EE gainx2 EE gain S.R. >5% (10% Natural Guide Stars On axis, ~ 8 mag R-mag 14.5 within 6.7 to 7.7 radius R-mag <17.5 within 52 to 105 radius On Axis, NIR, Jmag 15 Low Order sensing Sky coverage Close to bright stars 95%>90% Science target = TT reference 4LGSF config.NGS onlyØ12Ø2Ø20 WFS 1 NGS L3-CCD (40*40 sub app.) 4 LGS L3-CCD (40*40 sub app.) 1 TT L3-CCD 4 LGS L3-CCD (40*40 sub app.) 1 TT L3-CCD 4 LGS L3-CCD (40*40 sub app.) 1 IR Low Order Loop frequencyHO loop: 700 Hz TT loop: 250Hz HO loop: 1 kHz TT loop: 200Hz HO loop: 1 kHz LO loop: Hz

GALACSI GRAAL Commonalities Same – DSM, 4LGS, Instrument control SW with 2 different Configurations Common developments for – SPARTA and large parts of the SW and functionalities() Cluster? – L3CCD cameras for high order WF and tip tilt sensing (40 by 40 sub apertures) Common requirements: – WFS co-rotation to pupil – Seeing enhancer mode GLAO – GLAO modes: Tip tilt star outside the scientific field free of obscuration of the science beam 20 Years

AO Types SCAO: – 1 Natural guide star, 1 WFS – WFS measures Turbulence – correction by the DM 4 GLAO: – 4 Laser guide stars, 4 WFSs – 1 Natural guide star, 1 TT Sens. – Average WFS signal High order DM command + tip tilt meas. LTAO: – 4 Laser guide stars, 4 WFSs (closer together) – 1 Natural guide star, 1 low order sensor – WFS signal + Tomography Algorithm high order DM command + tip tilt +focus meas. – correction by the DM

20 Years Altitude [km] LGS beam Ø [m] Beam offset [m] GRAAL GALACSI WFM GALACSI NFM LGS at 6LGS at 64LGS at

GRAAL LGS and NGS pickup outside the science field HAWK-I co-rotates to the sky Matching of the WFS – DSM geometries counter rotation of the LGS WFSs 20 Years Integration to a existing instrument Strong constraints to space, weight, access, interfaces

GRAAL big pieces 20 Years Hawk-I shutter Alu- structure Steel structure bearing Torque drive Steel flange LGS trombone LGS WFS assembly NGS-TT sensor assembly MCM assembly Bearing (150Nm friction / 80kg) Torque drive (500Nm nominal / 70kg) Encoder (tape / scanning head) Cable-guide system (110 kg) Aluminium structure (75 kg) Steel structure (50 kg) Counterweight

GRAAL as seen from (above) the Nasmyth platform Flange sandwiched between UT- Nasmyth and Hawk-I Aluminum and steel structure for stiffness and weight constraints 1kHz, 0-noise LGS WFS, optics and trombone focusing on a Ø500 mm (x4) Retractable focal enlarger x6 (maintenance and commissioning), with WFS pick-up Internal co-rotator for pupil derotation, direct drive in torque mode, strip band encoder, control loop using VLT-SW standard library 100 kg counterweight to balance 150 kg of electronics ICPs for quick-separation

GRAAL arrangement on UT4 2 E-Cabinet on board – (WFS camera electronics) Uses the HAWK-I cable rotator Cabinet on the NP – motion control, Cabinet on Azimuth PF – SPARTA RTC – 5*NGC backend Cabinet in the computer room – SPARTA cluster 20 Years

GRAAL Performance Image improvement x~2 (EE in 0.1 pixel), seeing reducer: x0.8 (in Ks) Image improvement x~2 (EE in 0.1 pixel), seeing reducer: x0.8 (in Ks) Improvement for all seeing conditions Improvement for all seeing conditions J. PaufiqueGRAAL FDR, 10/03/2009

MUSE-GALACSI MUSE: – 3d Spectrograph with 300 by 300 spatial resolution elements – Spectrometer resolution – 24 spectrographs with 1CCD 4096 by 4096 pixels each – Wavelength range: nm – Developed by consortium lead by CRA- Lyon, PI: R.Bacon Nasmyth platform over filled (Volume, Weight) extension for cabinets and access 20 Years

GALACSI –FDR 16 th June WFM 1 MUSE FOV 1 faint NGS within 3.4 FOV 4 Sodium LGSs Rayleigh cone NFM NGS-LGS Configurations

20 Years

LGS WFS path 14 Annular Mirror, ( no obstruction for MUSE WFM) LGS dichroic inserted for NFM WFS, LA LGS dichroic, Reflects 589nm transmits the rest to TTS Pupil relay Telecentricity lens Focus compensator Pyramid: LGS separation near LGS focus On linear stage to switch between modes Jitter actuator 2 nd Pupil relay from VLT AIT pupil

GALACSI Main assembly GALACSI at Nasmyth B UT4 5 E-Boxes on board 1 Cabinet on NP 1 Cabinet on AZ P 2 cable chains AO Facility Review,

IRLOS AO Facility Review, HAWAI –I 1024 x 1024 pixels, 4 quadrant geometry 4 sub aperture lenslet array Frame rate 200/500 Hz for 20by20/8by8 pix RON <15 e-rms

GALACSI Performance 20 Years specification WFM performance NFM performance

Outlook to GRAAL Commissioning 20 Years