Lightweight IoT-based authentication scheme in cloud computing circumstance Source: Future Generation Computer Systems Volume 91, February 2019, Pages.

Slides:



Advertisements
Similar presentations
多媒體網路安全實驗室 An efficient and security dynamic identity based authentication protocol for multi-server architecture using smart cards 作者 :JongHyup LEE 出處.
Advertisements

A Secure Remote User Authentication Scheme with Smart Cards Manoj Kumar 報告者 : 許睿中 日期 :
Computer and Information Security 期末報告 學號 姓名 莊玉麟.
A simple remote user authentication scheme 1. M. S. Hwang, C. C. Lee and Y. L. Tang, “A simple remote user authentication.
電子商務與數位生活研討會 1 Further Security Enhancement for Optimal Strong-Password Authentication Protocol Tzung-Her Chen, Gwoboa Horng, Wei-Bin Lee,Kuang-Long Lin.
1 Improvement of the secure dynamic ID based remote user authentication scheme for multi-server environment Authors : Han-Cheng Hsiang and Wei-Kuan Shih.
Efficient Multi-server Password Authenticated Key Agreement Using Smart Cards Computer and Information Security Ming-Hong Shih.
An Improved Smart Card Based Password Authentication Scheme with Provable Security Source:Computer Standards & Interfaces, Vol. 31, No. 4, pp ,
A more efficient and secure dynamic ID- based remote user authentication scheme Yan-yan Wang, Jia-yong Liu, Feng-xia Xiao, Jing Dan in Computer Communications.
An Enhanced Two-factor User Authentication Scheme in Wireless Sensor Networks DAOJING HE, YI GAO, SAMMY CHAN, CHUN CHEN, JIAJUN BU Ad Hoc & Sensor Wireless.
多媒體網路安全實驗室 A novel user identification scheme with key distribution preserving user anonymity for distributed computer networks Date:2011/10/05 報告人:向峻霈.
A Risk Analysis Approach for Biometric Authentication Technology Author: Arslan Brömme Submission: International Journal of Network Security Speaker: Chun-Ta.
1 Anonymous Roaming Authentication Protocol with ID-based Signatures Lih-Chyau Wuu Chi-Hsiang Hung Department of Electronic Engineering National Yunlin.
多媒體網路安全實驗室 A novel user authentication and privacy preserving scheme with smartcards for wireless communications 作者 :Chun-Ta Li,Cgeng-Chi Lee 出處 :Mathematical.
Efficient remote mutual authentication and key agreement Improvement of Chien et al. ’ s remote user authentication scheme using smart cards An efficient.
Phosphor A Cloud based DRM Scheme with Sim Card th International Asia-Pacific Web Conference Author : Peng Zou, Chaokun Wang, Zhang Liu, Dalei.
Secure Authentication Scheme with Anonymity for Wireless Communications Speaker : Hong-Ji Wei Date :
Authentication of Signaling in VoIP Applications Authors: Srinivasan et al. (MIT Campus of Anna University, India) Source: IJNS review paper Reporter:
Department of Computer Engineering, Kyungpook National University Author : Eun-Jun Yoon, Wan-Soo Lee, Kee-Young Yoo Speaker : Wan-Soo Lee
Secure Communication between Set-top Box and Smart Card in DTV Broadcasting Authors: T. Jiang, Y. Hou and S. Zheng Source: IEEE Transactions on Consumer.
SPEAKER: HONG-JI WEI DATE: Secure Anonymous Authentication Scheme with Roaming for Mobile Networks.
A flexible biometrics remote user authentication scheme Authors: Chu-Hsing Lin and Yi-Yi Lai Sources: Computer Standards & Interfaces, 27(1), pp.19-23,
User authentication schemes with pseudonymity for ubiquitous sensor network in NGN Authors: Binod Vaidya, Joel J. Rodrigues and Jong Hyuk Park Source:
RSA-based password authenticated key exchange protocol Presenter: Jung-wen Lo( 駱榮問 )
SPEAKER: HONG-JI WEI DATE: Efficient and Secure Anonymous Authentication Scheme with Roaming Used in Mobile Networks.
Threshold password authentication against guessing attacks in Ad hoc networks ► Chai, Zhenchuan; Cao, Zhenfu; Lu, Rongxing ► Ad Hoc Networks Volume: 5,
多媒體網路安全實驗室 An efficient and security dynamic identity based authentication protocol for multi-server architecture using smart cards 作者 : Xiong Li, Yongping.
Threshold password authentication against guessing attacks in Ad hoc networks Authors: Zhenchuan Chai, Zhenfu Cao, Rongxing Lu Sources: Ad Hoc Networks,
SOURCE:2014 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING AUTHER: MINGLIU LIU, DESHI LI, HAILI MAO SPEAKER: JIAN-MING HONG.
An Efficient and Practical Authenticated Communication Scheme for Vehicular Ad Hoc Networks Source: IEEE Transactions on Vehicular Technology, Reviewing.
Non-PKI Methods for Public Key Distribution
Lightweight Mutual Authentication for IoT and Its Applications
A Dynamic ID-Based Generic Framework for Anonymous Authentication Scheme for Roaming Service in Global Mobility Networks Source: Wireless Personal Communications,
Reporter :Chien-Wen Huang
Source : IEEE Access, In Press, 2016
無線環境的認證方法及其在電子商務應用之研究
Cryptanalyses and improvements of two cryptographic key assignment schemes for dynamic access control in a user hierarchy Source: Computer & Security,
Reporter:Chien-Wen Huang
A lightweight authentication scheme based on self-updating strategy for space information network Source: International Journal Of Satellite Communications.
A secure and traceable E-DRM system based on mobile device
Source : Future Generation Computer Systems, Vol. 68, pp , 2017
Efficient password authenticated key agreement using smart cards
A robust and anonymous patient monitoring system using wireless medical sensor networks Source: Future Generation Computer Systems, Available online 8.
Practical and Secure Nearest Neighbor Search on Encrypted Large-Scale Data Source : IEEE INFOCOM IEEE International Conference on Computer Communications,
A Secure Anonymity Preserving Authentication Scheme for Roaming Service in Global Mobility Networks Source: Wireless Personal Communications, ahead of.
Security of a Remote Users Authentication Scheme Using Smart Cards
Efficient Time-Bound Hierarchical Key Assignment Scheme
Chair Professor Chin-Chen Chang Feng Chia University
Authors: Wei-Chi KU, Hao-Chuan TSAI, Maw-Jinn TSAUR
Privacy Preserving Ranked Multi-Keyword
Authors : Parwinder Kaur Dhillon and Sheetal Kalra
Source: Mobile Information Systems, vol. 2017, 2017.
By Hyun-Chul Kim, Hong-Woo Lee, Kyung-Seok Lee, Moon-Seog Jun
A Novel Latin Square-based Secret Sharing for M2M Communications
Lightweight IoT-based authentication scheme in cloud computing circumstance Source: Future Generation Computer Systems Volume 91, February 2019, Pages.
An efficient biometric based remote user authentication scheme for secure internet of things environment Source: Journal of Intelligent & Fuzzy Systems.
Date:2011/09/28 報告人:向峻霈 出處: Ren-Chiun Wang  Wen-Shenq Juang 
A lightweight biometrics based remote user authentication scheme for IoT services Source: Journal of Information Security and Applications Volume 34, Part.
Controllable and Trustworthy Blockchain-based Cloud Data Management
Authors: Yuh-Min TSENG, Tsu-Yang WU, Jui-DiWU
A new chaotic algorithm for image encryption
Source: Pattern Recognition Letters 29 (2008)
Source: Computer Networks Volume 149, 11 February 2019, Pages 29-42
Source: Journal of Systems and Software, Vol. 140, pp , June 2018
Source:Journal of Systems and Software, vol. 140, pp , June 2018
Improvement of Chien et al
Source: Sensors, Volume 19, Issue 9 (May )
Biometrics-based RSA Cryptosystem for Securing Real-Time Communication
Privacy Protection for E-Health Systems by
A lightweight authentication scheme with privacy protection for smart grid communications Source: Future Generation Computer Systems Volume 100, November.
Presentation transcript:

Lightweight IoT-based authentication scheme in cloud computing circumstance Source: Future Generation Computer Systems Volume 91, February 2019, Pages 244- 251 Authors: Lu Zhou , Xiong Li , Kuo-Hui Yeh , Chunhua Su , Wayne Chiu Speaker: Yao-Zhu Zheng Date: 2018/11/22

Outline Introduction Proposed scheme Experimental results Conclusions

Introduction Server User Control Server Require Authentication Response Server 2.Smart card User Control Server 1.Registration

Proposed scheme (1/13) Registration Authentication Password change

Proposed scheme (2/13) Registration User registration Cloud server registration 2.Data for Authentication Server 1.Registration 2.Smart card User Control Server 1.Registration

Proposed scheme (3/13)

Proposed scheme (4/13) Registration – User registration Control Server select (IDi , PIDi) , PWi , bi HPi = h(PWi ∥ bi) send (IDi , PIDi) to CS CS check IDi C1* = h(PIDi ∥ IDcs ∥ x ) C2* = h(IDi ∥ x ) store IDi in database, send(C1* , C2* , IDcs) to Ui C1 = C1* ⊕ HPi C2 = C2* ⊕ h(IDi ∥ HPi ) C3 = bi ⊕ h(IDi ∥ PWi ) Store (C1 , C2 , C3 , PIDi , IDcs) in smart card

Proposed scheme (5/13) Registration – Cloud server registration Control Server Server send (SIDj ,PSIDj) to CS CS computes B1 = h(PSIDj ∥ IDcs ∥ x ) B2 = h(SIDj ∥ x ) store SIDj and send (B1 , B2 , IDcs) to Sj Sj store (B1 , B2 , SIDj, PSIDj, IDcs)

Proposed scheme (6/13) Authentication Server M4 M3 User Control Server

Proposed scheme (7/13) Authentication Ui Input IDi , PWi select ru, PIDinew bi = C3 ⊕ h(IDi ∥ PWi ) HPi = h(PWi ∥ bi) C1* = C1 ⊕ HPi C2* = C2 ⊕ h (IDi ∥ HPi ) D1 = C1* ⊕ ru D2 = h(ru ∥ PIDi ∥ IDcs) ⊕ IDi D3 = C2* ⊕ h (IDi ∥ HPi ) ⊕ PIDinew ⊕ h(ru ∥ IDi ) D4 = h(IDi ∥ PIDi ∥ PIDinew ∥ ru ∥ D3) M1 = {PIDi , D1 , D2 , D3 , D4} Pass M1 to Sj User

Proposed scheme (8/13) Authentication Sj select PSIDjnew , rs D5 = B1 ⊕ rs D6 = h(rs ∥ PSIDj ∥ IDcs ) ⊕ SIDj D7 = B2 ⊕ PSIDjnew ⊕ h(rs ∥ PSIDj ) D8 = h(SIDj ∥ PSIDj ∥ PSIDjnew ∥ rs ∥ D7 ) M2 = {PIDi , D1 , D2 , D3 , D4 , PSIDj , D5 , D6 , D7 , D8} Pass M2 to CS Server

Proposed scheme (9/13) Authentication CS ru = D1 ⊕ h(PIDi ∥ IDcs ∥ x ) IDi = D2 ⊕ h (ru ∥ PIDi ∥ IDcs) PIDinew = D3 ⊕ h(IDi ∥ x ) ⊕ h (ru ∥ IDi ) check IDi check D4 ?= h (IDi ∥ PIDi ∥ PIDinew ∥ ru ∥ D3) rs = D5 ⊕ h(PSIDj ∥ IDcs ∥ x ) SIDj = D6 ⊕ h(rs ∥ PSIDj ∥ IDcs ) PSIDjnew = D7 ⊕ h(SIDj ∥ x ) ⊕ h(rs∥ SIDj ) check SIDj check D8 ?= h (SIDj ∥ PSIDj ∥ PSIDjnew ∥ rs ∥ D7) Control Server

Proposed scheme (10/13) Authentication CS select rcs SKcs = h (ru ⊕ rs ⊕ rcs) D9 = h(PSIDjnew ∥ IDcs ∥ x ) ⊕ h (rs ∥ PSIDjnew ) D10 = h(PSIDjnew ∥ rs ∥ PSIDj ) ⊕ (ru ⊕ rcs ) D11 = h(SKcs ∥ D9 ∥ D10 ∥ h (SIDj ∥ x ) ) D12 = h(PIDinew ∥ IDcs ∥ x ) ⊕ h(ru ∥ PIDinew ) D13 = h(PIDinew ∥ ru ∥PIDi ) ⊕ h(rs ⊕ rcs) D14 = h(SKcs ∥ D12 ∥ D13 ∥ h (IDi ∥ x ) ) M3 = {D9 , D10 , D11 , D12, D13 , D14} Pass M3 to Sj Control Server

Proposed scheme (11/13) Authentication Sj (ru ⊕ rcs) = D10 ⊕ h(PSIDjnew ∥ rs ∥ PSIDj ) SKs = h (rs ⊕ ru ⊕ rcs) check D11 ?= h(SKs ∥ D9 ∥ D10 ∥ B2) B1new = D9 ⊕ h(rs ∥ PSIDjnew ) (B1 , PSIDj) = (B1new , PSIDjnew) M4 = {D12, D13, D14} Pass M4 to Ui Server

Proposed scheme (12/13) Authentication Ui (rs ⊕ rcs) = D13 ⊕ h(PIDinew ∥ ru ∥ PIDi ) SKu = h (ru ⊕ rs ⊕ rcs) check D14 ?= h(SKu ∥ D12 ∥ D13 ∥ C2* ) C1new = D12 ⊕ h (ru ∥ PIDinew) ⊕ HPi (C1 , PIDi ) = (C1new , PIDinew ) User

Proposed scheme(13/13) Password change Control Server User Ui send M5 to CS with password change request M5 = M1 CS computes ru , IDi , PIDinew and check IDi , D4 If pass, calculates D12 and D15 D12 = h(PIDinew ∥ IDcs ∥ x ) ⊕ h(ru ∥ PIDinew ) D15 = h(IDi ∥ , PIDi ∥ PIDinew ∥ ru ∥ D12) send M6 = {D12 , D15} to Ui smart card check D15 ?= h(IDi ∥ PIDi ∥ PIDinew ∥ ru ∥ D12) If so, Ui can input PWinew as a new password computes HPinew = h(PWinew ∥ bi) C1new = D12 ⊕ h(ru ∥ PIDinew) ⊕ HPinew C2new = C2* ⊕ h(IDi ∥ HPinew) C3new = bi ⊕ h(IDi ∥ PWinew) replace (C1, C2, C3, PIDi ) with (C1new, C2new, C3new, PIDinew )

Experimental results(1/2)

Experimental results(2/2) Th = the one-way hash function TS = symmetric encryption/decryption algorithm The execution time of XOR operations can be neglected when comparing to Th and TS

Conclusions A new and robust authentication scheme for IoT-cloud architecture circumstances. An authentication scheme has high security and low cost.