CSC 220: Computer Organization COMBINATIONAL CIRCUITS-2

Slides:



Advertisements
Similar presentations
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Encoders.
Advertisements

Give qualifications of instructors: DAP
Princess Sumaya University
Digital Logic Design Week 7 Encoders, Decoders, Multiplexers, Demuxes.
Overview Part 2 – Combinational Logic Functions and functional blocks
Functions and Functional Blocks
Decoders/DeMUXs CS370 – Spring Decoder: single data input, n control inputs, 2 outputs control inputs (called select S) represent Binary index of.
System Digital Encoder, Decoder, and Contoh Penerapanya.
التصميم المنطقي Second Course
CS 151 Digital Systems Design Lecture 17 Encoders and Decoders
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 3 – Combinational Logic Design Part 2 –
Combinational Logic Building Blocks
Combinational Logic1 DIGITAL LOGIC DESIGN by Dr. Fenghui Yao Tennessee State University Department of Computer Science Nashville, TN.
Digital Logic Design Lecture 19. Announcements Homework 6 due Thursday 11/6 Recitation quiz on Monday, 11/10 – Will cover material from lectures 18,19,20.
ECE 301 – Digital Electronics Multiplexers and Demultiplexers (Lecture #12)
Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. Terms of Use (Hyperlinks are active in View Show mode) Terms of Use Logic and Computer Design.
Morgan Kaufmann Publishers
Combinational Circuit – Arithmetic Circuit
MSI Devices M. Mano & C. Kime: Logic and Computer Design Fundamentals (Chapter 5) Dr. Costas Kyriacou and Dr. Konstantinos Tatas ACOE161 - Digital Logic.
WEEK #9 FUNCTIONS OF COMBINATIONAL LOGIC (DECODERS & MUX EXPANSION)
1 Lecture #7 EGR 277 – Digital Logic Reading Assignment: Chapter 4 in Digital Design, 3 rd Edition by Mano Chapter 4 – Combinational Logic Circuits A)
ENG241 Digital Design Week #4 Combinational Logic Design.
Morgan Kaufmann Publishers
ACOE1611 Combinational Logic Circuits Reference: M. Mano, C. Kime, “Logic and Computer Design Fundamentals”, Chapter 2.
CO UNIT-I. 2 Multiplexers: A multiplexer selects information from an input line and directs the information to an output line A typical multiplexer has.
Combinational Circuits by Dr. Amin Danial Asham. References  Digital Design 5 th Edition, Morris Mano.
Magnitude Comparator Dr. Ahmed Telba.
Multiplexors Decoders  Decoders are used for forming separate signals for different combination of input signals.  The multiplexer circuit is a digital.
Chapter 3: Combinational Functions and Circuits 3-5 to 3-7: Decoders
ECE/CS 352 Digital System Fundamentals© T. Kaminski & C. Kime 1 ECE/CS 352 Digital Systems Fundamentals Spring 2001 Chapter 3 -Part 2 Tom Kaminski & Charles.
Logic and Computer Design Fundamentals, Fifth Edition Mano | Kime | Martin Copyright ©2016, 2008, 2004 by Pearson Education, Inc. All rights reserved.
1 DLD Lecture 16 More Multiplexers, Encoders and Decoders.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Fundamentals Tenth Edition Floyd.
ACOE161 (Spring2007)MSI Devices1 Revision on MSI Devices M. Mano & C. Kime: Logic and Computer Design Fundamentals (Chapter 5)
MSI Circuits.
CHAPTER 2 Digital Combinational Logic/Arithmetic Circuits.
Combinational Circuits: MSI Components
Chapter 3 Combinational Logic Design II
Multiplexer.
ENG2410 Digital Design “Combinational Logic Design”
CS221: Digital Logic Design Combinational Circuits 3
Multiplexers and Demultiplexers,
Combinational Logic Circuits
Combinational Functions and Circuits
Combinational Circuit Design
Combinational Logic Circuits
Lecture 4: Combinational Functions and Circuits
Digital Fundamentals Floyd Chapter 6 Tenth Edition
Reference: Chapter 3 Moris Mano 4th Edition
Overview Introduction Logic Gates Flip Flops Registers Counters
Dr. Clincy Professor of CS
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Encoders.
Magnitude Comparator A magnitude comparator is a combinational circuit that compares two numbers, A and B, and then determines their relative magnitudes.
Chapter 6 Functions of Combinational Logic
FIGURE 4.1 Block diagram of combinational circuit
CSC 220: Computer Organization
Introduction to Digital Systems Lecturer: 潘欣泰
COE 202: Digital Logic Design Combinational Circuits Part 3
Unit 7 Sequential Circuits (Flip Flop)
Unit 5 COMBINATIONAL CIRCUITS-1
Dr. Clincy Professor of CS
CSC 220: Computer Organization Logic Gates and Functions
CSC 220: Computer Organization
Unit 10 Arithmetic-logic Units
ECE 331 – Digital System Design
Unit 3 Simplification and K-map
Combinational Circuits
Digital System Design Combinational Logic
Adder, Subtructer, Encoder, Decoder, Multiplexer, Demultiplexer
Arithmetic Circuits.
Presentation transcript:

CSC 220: Computer Organization COMBINATIONAL CIRCUITS-2 College of Computer and Information Sciences Department of Computer Science CSC 220: Computer Organization Unit 6 COMBINATIONAL CIRCUITS-2

Unit 6: Combinational Circuits-2 Overview Multiplexers DeMultiplexers Decoders Encoders Chapter-3 M. Morris Mano, Charles R. Kime and Tom Martin, Logic and Computer Design Fundamentals, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

3

4

5

6

7

8

9

10

11

Implementing Functions with Multiplexers Prof. Laxmikant Kale - university of illinois at urbana-champaign - Computer Sciences

Dr Mohamed A Berbar

Demultiplexer Given an input line and a set of selection lines, the demultiplexer will direct data from input to a selected output line. An example of a 1-to-4 demultiplexer: demux Data D Outputs select S1 S0 Y0 = D.S1'.S0' Y1 = D.S1'.S0 Y2 = D.S1.S0' Y3 = D.S1.S0 Demultiplexer 15

Demultiplexer Takes one input Out to one of 2n possible outputs 16

Decoder 17

18

19

20

Decoders with Enable (1/2) Decoders often come with an enable signal, so that the device is only activated when the enable, E=1. Truth table: S1 S0 Q0 = ES1'S0' Q1 = ES1'S0 Q2 = ES1S0' Q3 = ES1S0 E Circuit: Decoders with Enable

Demultiplexer Vs Decoder The demultiplexer is actually identical to a decoder with enable, as illustrated below: 2x4 Decoder D S1 S0 Y0 = D.S1'.S0' Y1 = D.S1'.S0 Y2 = D.S1.S0' Y3 = D.S1.S0 E Exercise: Provide the truth table for above demultiplexer. Demultiplexer

A Demux Using NAND Gates: A Decoder with an Enable 23

24

25

Dr Mohamed A Berbar 26

27

Larger Decoders (2/6) 1 1 = enabled 0 = disabled Larger Decoders 3x8 w x y 1 : 7 F0 = w'x'y' F1 = w'x'y F7 = wxy 2x4 Dec S1 S0 1 2 3 F0 = w'x'y' F1 = w'x'y F2 = w'xy' F3 = w'xy E F4 = wx'y' F5 = wx'y F6 = wxy' F7 = wxy w x y 1 0 = disabled 1 = enabled Larger Decoders

Larger Decoders (3/6) 1 1 1 = enabled 0 = disabled Larger Decoders 3x8 w x y 1 : 7 F0 = w'x'y' F1 = w'x'y F7 = wxy 2x4 Dec S1 S0 1 2 3 F0 = w'x'y' F1 = w'x'y F2 = w'xy' F3 = w'xy E F4 = wx'y' F5 = wx'y F6 = wxy' F7 = wxy w x y 1 1 0 = disabled 1 = enabled Larger Decoders

Larger Decoders (4/6) 1 0 = disabled 1 1 = enabled Larger Decoders 3x8 w x y 1 : 7 F0 = w'x'y' F1 = w'x'y F7 = wxy 2x4 Dec S1 S0 1 2 3 F0 = w'x'y' F1 = w'x'y F2 = w'xy' F3 = w'xy E F4 = wx'y' F5 = wx'y F6 = wxy' F7 = wxy w x y 1 1 = enabled 0 = disabled 1 Larger Decoders

Larger Decoders (5/6) Question: 4x16 Dec S3 S2 S1 S0 w x y z 1 : 15 F0 F1 F15 Question: Construct a 4x16 decoder from two 3x8 decoders with 1- enable. 3x8 Dec S2 S1 S0 1 : 7 F0 F1 F7 E F8 F9 F15 w x y z Larger Decoders

32

Implementing Functions with Decoder 33

Dr Mohamed A Berbar 34

35

36

Decoders: Implementing Functions Example: Full adder y z 1 2 3 4 5 6 7 S C 1 Decoders: Implementing Functions CS1104-7

Decoders: Implementing Functions 3x8 Dec S2 S1 S0 x y z 1 2 3 4 5 6 7 S C 1 1 1 Decoders: Implementing Functions CS1104-7

Using a 38 decoder (assuming 1-enable and active-high outputs). Example: F(a,b,c) =  m(4,6,7) Using a 38 decoder (assuming 1-enable and active-high outputs). 3x8 Dec S2 S1 S0 a b c 1 2 3 4 5 6 7 F EN Reducing Decoders CS1104-7

Encoder Encoder is the opposite of decoder 2n inputs or less and n outputs Example: Decimal to BCD 10 inputs : I0, I1, I2, I3, …, I9 4 output lines 40

Example: Designing an Octal to binary Encoder Example: Designing an Octal to binary Encoder Inputs: 8 (D7 … D0) Outputs: 3 (A2 … A0) Truth Table: 41

Inputs are Minterms Can OR the minterms appropriately to get each of the outputs A0, A1, A2 Example: A0 = D1 + D3 + D5 + D7 42

Generating Outputs using OR of Minterms A0 = D1 + D3 + D5 + D7 A1 = D2 + D3 + D6 + D7 A2 = D4 + D5 + D6 + D7 43