Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT  Danika L.

Slides:



Advertisements
Similar presentations
Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT  Danika L.
Advertisements

Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model  M. Saito, T.
Micro-CT bone structure evaluation in the Pond-Nuki dog model
X. I. Gu, P. E. Palacio-Mancheno, D. J. Leong, Y. A. Borisov, E
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
Mineralization of articular cartilage in the sprague-dawley rat: characterization and mechanical analysis  M.L. Roemhildt, B.D. Beynnon, M. Gardner-Morse 
Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study  F.W. Roemer, T. Neogi,
Imaging following acute knee trauma
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Two year longitudinal change and test–retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative  F. Eckstein, M.D.,
T1ρ and T2 relaxation times predict progression of knee osteoarthritis
Predictive validity of within-grade scoring of longitudinal changes of MRI-based cartilage morphology and bone marrow lesion assessment in the tibio-femoral.
The relationships between bone mineral density in the spine, hip, distal femur and proximal tibia and medial minimum joint space width in the knees of.
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis  Danika L. Batiste, B.Sc, Alexandra.
One-stage focal cartilage defect treatment with bone marrow mononuclear cells and chondrocytes leads to better macroscopic cartilage regeneration compared.
The groove model of osteoarthritis applied to the ovine fetlock joint
Imaging of non-osteochondral tissues in osteoarthritis
7th International Workshop on Osteoarthritis Imaging report: “imaging in OA – now is the time to move ahead”  A. Guermazi, F. Eckstein, D. Hunter, F.
An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate.
Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular.
Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography  D.D. McErlain, M.Sc., C.T.G. Appleton,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Experimental scoring systems for macroscopic articular cartilage repair correlate with the MOCART score assessed by a high-field MRI at 9.4 T – comparative.
Development and reliability of a multi-modality scoring system for evaluation of disease progression in pre-clinical models of osteoarthritis: celecoxib.
Non-invasive in vivo quantification of the medial tibial cartilage thickness progression in an osteoarthritis rabbit model with quantitative 3D high resolution.
Positron emission tomography with 18F-FDG in osteoarthritic knee
Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI.
18F-FDG PET-CT and MRI co-registered knee assessment after ACL transection in an in vivo canine model  M. Menendez, D. Clark, K. Binzel, B. Hettlich,
In vivo contrast-enhanced micro MR-imaging of experimental osteoarthritis in the rabbit knee joint at 7.1T1 1 This work is supported by BMBF, Leitprojekt.
Quantitative assessment of articular cartilage morphology via EPIC-μCT
Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis  S. Amin,
Hidden osteophyte formation on plain X-ray is the predictive factor for development of knee osteoarthritis after 48 months – data from the Osteoarthritis.
Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model  M. Saito, T.
B. Bittersohl, F. R. Miese, H. S. Hosalkar, M. Herten, G. Antoch, R
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
Demineralized bone matrix and platelet-rich plasma do not improve healing of osteochondral defects of the talus: an experimental goat study  C.J.A. van.
Cyclodextrin polysulphate protects articular cartilage in experimental lapine knee osteoarthritis  S. Groeneboer, M.Sc., P. Pastoureau, M.D., Ph.D., E.
Characterization of pro-apoptotic and matrix-degradative gene expression following induction of osteoarthritis in mature and aged rabbits  Dr. C.M. Robertson,
Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic.
Validation of a 40MHz B-scan ultrasound biomicroscope for the evaluation of osteoarthritis lesions in an animal model  Mathieu P. Spriet, D.V.M., Christiane.
Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis – part II: bone mineral density assessment  M. Bouchgua, D.M.V., K.
M. R. Doschak, Ph. D. , J. M. LaMothe, Ph. D. , D. M. L. Cooper, B. Sc
Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis – part I  M. Bouchgua, D.M.V., K. Alexander, D.M.V., M.Sc., Dipl. A.C.V.R.,
DGEMRIC as a tool for measuring changes in cartilage quality following high tibial osteotomy: a feasibility study  M. Rutgers, L.W. Bartels, A.I. Tsuchida,
Is increased joint loading detrimental to obese patients with knee osteoarthritis? A secondary data analysis from a randomized trial  M. Henriksen, D.J.
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
D. Hayashi, F.W. Roemer, A. Guermazi  Osteoarthritis and Cartilage 
Jun Li, M. D. , James M. Williams, Ph. D. , Zhong Zhong, Ph. D
Pre-radiographic osteoarthritic changes are highly prevalent in the medial patella and medial posterior femur in older persons: Framingham OA study  D.
Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis  T. Vinardell, D.V.M., I.P.S.A.V., M.Sc.,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
F.W. Roemer, M.D.  Osteoarthritis and Cartilage 
Volumetric bone mineral density of the tibia is not increased in subjects with radiographic knee osteoarthritis  M. Abdin-Mohamed, M.B.B.S., M.R.C.P.,
Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study  Y.S. Kim,
Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis  E. Calvo, M.D., I. Palacios,
Correlation between 18F-FDG and F-18 sodium fluoride (NaF) PET/MRI and gross morphology of the knee in a canine model of osteoarthritis.  M.I. Menendez,
X. Li, Ph. D. , C. Benjamin Ma, M. D. , T. M. Link, M. D. , D. -D
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
Weight-bearing asymmetry and vertical activity differences in a rat model of post- traumatic knee osteoarthritis  C.B. Hamilton, M.A. Pest, V. Pitelka,
The association between hip bone marrow lesions and bone mineral density: a cross- sectional and longitudinal population-based study  H. Ahedi, D. Aitken,
Degenerative knee joint disease in mice lacking 3′-phosphoadenosine 5′-phosphosulfate synthetase 2 (Papss2) activity: a putative model of human PAPSS2.
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
Correlation between the MR T2 value at 4
CT imaging for evaluation of calcium crystal deposition in the knee: initial experience from the Multicenter Osteoarthritis (MOST) study  D. Misra, A.
Presentation transcript:

Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT  Danika L. Batiste, M.Sc., Alexandra Kirkley, M.D., F.R.C.S.(C), Sheila Laverty, M.V.B., Dipl. A.C.V.S., E.C.V.S., Lisa M.F. Thain, M.D., F.R.C.P.(C), Alison R. Spouge, M.D., F.R.C.P.(C), David W. Holdsworth, Ph.D.  Osteoarthritis and Cartilage  Volume 12, Issue 12, Pages 986-996 (December 2004) DOI: 10.1016/j.joca.2004.08.010 Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 Coronal micro-CT slices of a control (a) and ACLT joint demonstrating osteophyte development (b). Note the appearance of normal bone contour visible in (a), which is also visible underlying the newly formed, reduced density osteophytic bone indicated by arrows in (b). Osteoarthritis and Cartilage 2004 12, 986-996DOI: (10.1016/j.joca.2004.08.010) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 Macroscopic photos of full-thickness ulceration on the femur (a) and tibia (b). Ulceration indicated by arrows. Osteoarthritis and Cartilage 2004 12, 986-996DOI: (10.1016/j.joca.2004.08.010) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 Left column (A, C, E, G): macroscopic assessment of femorotibial cartilage grade in control, 4-, 8-, and 12-week ACLT specimens. ANOVA values presented as mean±s.e.m. for all four compartments (LFC, MFC, LTP, and MTP). Control 4-week was not statistically different from Control 12-week. Control vs 4-week ACLT *P<0.01, Control vs 8-week ACLT †P<0.01, Control vs 8-week ACLT ††P<0.001, Control vs 12-week ACLT ‡P<0.01, Control vs 12-week ACLT ‡‡P<0.001, 4-week vs 8-week ACLT #P<0.05, 4-week vs 12-week ACLT ##P<0.01. Right column (B, D, F, H): MRI evaluation of femorotibial cartilage grade in control, 4-, 8-, and 12-week ACLT specimens. ANOVA values presented as mean±s.e.m. for all four compartments (LFC, MFC, LTP, and MTP). Control 4-week was not statistically different from Control 12-week. Control vs 12-week ACLT *P<0.05, Control vs 8-week ACLT ‡P<0.01, 4-week ACLT vs 12-week ACLT †P<0.05. (Please note that control animals were not studied at the 8-week time-point.) Osteoarthritis and Cartilage 2004 12, 986-996DOI: (10.1016/j.joca.2004.08.010) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 Sagittal MRI slices (a–d) at various time-points depicting progressive cartilage lesions from 4 to 12 weeks post-ACLT. Rectangular inset (e–h) magnified to clearly illustrate femoral lesions (arrows indicate extent of lesion). Osteoarthritis and Cartilage 2004 12, 986-996DOI: (10.1016/j.joca.2004.08.010) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Scatterplot of bone volume fraction (BV/TV) as a function of volumetric bone mineral density (vBMD). Osteoarthritis and Cartilage 2004 12, 986-996DOI: (10.1016/j.joca.2004.08.010) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 Micro-CT analysis of vBMD at various time-points. ANOVA values presented as mean±s.e.m. for LFC, MFC, LTP, and MTP. Control vs 4-week ACLT †P<0.001, Control vs 8-week ACLT ††P<0.001, 4-week vs 8-week ACLT *P<0.05, 4-week vs 8-week ACLT **P<0.01, 4-week vs 12-week ACLT #P<0.05, 4-week vs 12-week ACLT ##P<0.001, 8-week vs 12-week ACLT ‡P<0.001. Osteoarthritis and Cartilage 2004 12, 986-996DOI: (10.1016/j.joca.2004.08.010) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 7 Coronal micro-CT slices (a–d) at various time-points depicting osteophyte development. Volume rendered micro-CT (e–h) clearly illustrates osteophyte volume (red) and irregular bone surface contour. Osteoarthritis and Cartilage 2004 12, 986-996DOI: (10.1016/j.joca.2004.08.010) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions

Fig. 8 Micro-CT analysis of osteophyte volume at various time-points. ANOVA values presented as mean±s.e.m. for combined femur and tibia (*P<0.05). Osteoarthritis and Cartilage 2004 12, 986-996DOI: (10.1016/j.joca.2004.08.010) Copyright © 2004 OsteoArthritis Research Society International Terms and Conditions